Wang Chengsong, Wu Xuefeng, Song Tao, Xu Fangquan, Zhang Shizheng, Ji Xiang
{"title":"Chromium-Driven Microstructural Evolution and Mechanical Property Enhancement in Forged Low-Alloy Steels","authors":"Wang Chengsong, Wu Xuefeng, Song Tao, Xu Fangquan, Zhang Shizheng, Ji Xiang","doi":"10.1134/S2070205125700297","DOIUrl":null,"url":null,"abstract":"<p>To meet the lightweight requirement of large hydraulic cylinder barrels and piston rods, precise control of Cr content in low alloy steel was carried out. Material structure and comprehensive mechanical properties were analyzed using EBSD, XRD, SEM, EDS, etc. The results showed that an increase in Cr content refines the grain size of ferrite and pearlite, reduces the precipitation of inclusions like MnS, increases the precipitation of Cr<sub>23</sub>C<sub>6</sub>, induces grain orientation changes, and elevates the proportion of low-angle grain boundaries. The Cr contents of 0.0312, 0.111, and 0.22% correspond to the yield strengths of 303.56, 324.32, and 346.69 MPa, and the tensile strengths are 496.03, 536.993, and 595.238 MPa, with hardness values of 175.32, 186.31, and 201.95 HV, and scratch widths of 531, 518, and 506 µm respectively.</p>","PeriodicalId":745,"journal":{"name":"Protection of Metals and Physical Chemistry of Surfaces","volume":"61 2","pages":"421 - 429"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection of Metals and Physical Chemistry of Surfaces","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S2070205125700297","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
To meet the lightweight requirement of large hydraulic cylinder barrels and piston rods, precise control of Cr content in low alloy steel was carried out. Material structure and comprehensive mechanical properties were analyzed using EBSD, XRD, SEM, EDS, etc. The results showed that an increase in Cr content refines the grain size of ferrite and pearlite, reduces the precipitation of inclusions like MnS, increases the precipitation of Cr23C6, induces grain orientation changes, and elevates the proportion of low-angle grain boundaries. The Cr contents of 0.0312, 0.111, and 0.22% correspond to the yield strengths of 303.56, 324.32, and 346.69 MPa, and the tensile strengths are 496.03, 536.993, and 595.238 MPa, with hardness values of 175.32, 186.31, and 201.95 HV, and scratch widths of 531, 518, and 506 µm respectively.
期刊介绍:
Protection of Metals and Physical Chemistry of Surfaces is an international peer reviewed journal that publishes articles covering all aspects of the physical chemistry of materials and interfaces in various environments. The journal covers all related problems of modern physical chemistry and materials science, including: physicochemical processes at interfaces; adsorption phenomena; complexing from molecular and supramolecular structures at the interfaces to new substances, materials and coatings; nanoscale and nanostructured materials and coatings, composed and dispersed materials; physicochemical problems of corrosion, degradation and protection; investigation methods for surface and interface systems, processes, structures, materials and coatings. No principe restrictions exist related systems, types of processes, methods of control and study. The journal welcomes conceptual, theoretical, experimental, methodological, instrumental, environmental, and all other possible studies.