An Artificial Piezoelectric-Conductive Integrated Peri-Implant Gingiva Enables Efficient Bacterial Inhibition and Soft-Tissue Integration

IF 21.3 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wen Han, Zhiqing Liu, Hao Yu, Yaqi Zhang, Enhua Mei, Wei Wang, Feng Chen, Wentao Cao, Shengcai Qi
{"title":"An Artificial Piezoelectric-Conductive Integrated Peri-Implant Gingiva Enables Efficient Bacterial Inhibition and Soft-Tissue Integration","authors":"Wen Han,&nbsp;Zhiqing Liu,&nbsp;Hao Yu,&nbsp;Yaqi Zhang,&nbsp;Enhua Mei,&nbsp;Wei Wang,&nbsp;Feng Chen,&nbsp;Wentao Cao,&nbsp;Shengcai Qi","doi":"10.1007/s42765-025-00543-8","DOIUrl":null,"url":null,"abstract":"<div><p>Peri-implantitis is the main reason for dental implant failure. Optimizing electroactivity at the interface between dental implants and tissue is essential for enhancing integration and preventing bacterial invasion. Here, a bioinspired piezoelectric-conductive integrated peri-implant gingiva (PiG) with simultaneously enhanced antibacterial efficacy and soft-tissue integration, which is based on a flexible piezoelectric film and conductive polymer network, is presented. The piezoelectricity of PiG is achieved through the electrospinning of polyvinylidene fluoride/BaTiO<sub>3</sub>/MXene on a polydopamine-modified plasma-activated Ti surface, whereas the conductive property of PiG is achieved by the in situ polymerization of 3,4-ethylenedioxythiophene monomers. Under ultrasonic irradiation, PiG can promote the formation of neutrophil extracellular traps and reactive oxygen species, thus achieving synergistic and efficient piezodynamic killing of <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and <i>Escherichia coli (E. coli)</i>. Additionally, piezoelectricity-enabled electrical stimulation endows PiG with enhanced fibroblasts adhesion, proliferation, and collagen secretion. As a demonstration, ultrasound irradiation of PiG-grafted Ti implanted in a subcutaneous implantation rat model efficiently eliminates the <i>S. aureus</i> infection and rescues the implant with increased soft-tissue integration. The concept of an artificial PiG is anticipated to open new avenues for the development of high-performance implant materials, potentially extending their lifespans.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 4","pages":"1128 - 1147"},"PeriodicalIF":21.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00543-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Peri-implantitis is the main reason for dental implant failure. Optimizing electroactivity at the interface between dental implants and tissue is essential for enhancing integration and preventing bacterial invasion. Here, a bioinspired piezoelectric-conductive integrated peri-implant gingiva (PiG) with simultaneously enhanced antibacterial efficacy and soft-tissue integration, which is based on a flexible piezoelectric film and conductive polymer network, is presented. The piezoelectricity of PiG is achieved through the electrospinning of polyvinylidene fluoride/BaTiO3/MXene on a polydopamine-modified plasma-activated Ti surface, whereas the conductive property of PiG is achieved by the in situ polymerization of 3,4-ethylenedioxythiophene monomers. Under ultrasonic irradiation, PiG can promote the formation of neutrophil extracellular traps and reactive oxygen species, thus achieving synergistic and efficient piezodynamic killing of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Additionally, piezoelectricity-enabled electrical stimulation endows PiG with enhanced fibroblasts adhesion, proliferation, and collagen secretion. As a demonstration, ultrasound irradiation of PiG-grafted Ti implanted in a subcutaneous implantation rat model efficiently eliminates the S. aureus infection and rescues the implant with increased soft-tissue integration. The concept of an artificial PiG is anticipated to open new avenues for the development of high-performance implant materials, potentially extending their lifespans.

Graphical abstract

人工压电导电集成种植体周围牙龈实现有效的细菌抑制和软组织整合
种植体周围炎是导致种植体失败的主要原因。优化牙种植体和组织之间界面的电活动对于加强整合和防止细菌入侵至关重要。本文提出了一种基于柔性压电薄膜和导电聚合物网络的仿生压电导电集成种植体周围牙龈(PiG),该材料具有抗菌效果和软组织整合能力。通过在聚多巴胺修饰的等离子体活化钛表面上静电纺丝聚偏氟乙烯/BaTiO3/MXene获得了PiG的压电性,而通过原位聚合3,4-乙烯二氧噻吩单体获得了PiG的导电性能。在超声照射下,猪可以促进中性粒细胞胞外陷阱和活性氧的形成,从而实现对金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)的协同高效的压动力杀伤。此外,压电激活的电刺激使猪具有增强的成纤维细胞粘附,增殖和胶原分泌。结果表明,超声照射猪移植物Ti皮下植入大鼠模型,可有效消除金黄色葡萄球菌感染,挽救移植物,增加软组织整合。人造猪的概念有望为高性能植入材料的开发开辟新的途径,有可能延长它们的寿命。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信