Recovering the Diffusion Coefficient in the Porous Medium Equation from a Large-Time Measurement

IF 1 4区 数学 Q2 MATHEMATICS, APPLIED
Hagop Karakazian, Toni Sayah, Faouzi Triki
{"title":"Recovering the Diffusion Coefficient in the Porous Medium Equation from a Large-Time Measurement","authors":"Hagop Karakazian,&nbsp;Toni Sayah,&nbsp;Faouzi Triki","doi":"10.1007/s10440-025-00747-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the time-dependent Porous Medium Equation, <span>\\(u_{t} - \\alpha \\Delta u^{\\gamma }= 0\\)</span> with polytropic exponent <span>\\(\\gamma &gt;1\\)</span> and diffusion coefficient <span>\\(\\alpha &gt;0\\)</span>. Given the value of <span>\\(\\gamma \\)</span> and the solution <span>\\(u\\)</span> at a large time <span>\\(T\\)</span>, our goal is to determine the parameter <span>\\(\\alpha \\)</span> without the knowledge of the initial data <span>\\(u(0)\\)</span>. Leveraging an asymptotic inequality satisfied by <span>\\(u(T)\\)</span>, we propose a numerical algorithm to recover <span>\\(\\alpha \\)</span> through a minimization problem. Furthermore, we establish an upper bound on the error between the exact and recovered values of <span>\\(\\alpha \\)</span> and perform numerical simulations in two and three dimensional cases.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"199 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00747-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the time-dependent Porous Medium Equation, \(u_{t} - \alpha \Delta u^{\gamma }= 0\) with polytropic exponent \(\gamma >1\) and diffusion coefficient \(\alpha >0\). Given the value of \(\gamma \) and the solution \(u\) at a large time \(T\), our goal is to determine the parameter \(\alpha \) without the knowledge of the initial data \(u(0)\). Leveraging an asymptotic inequality satisfied by \(u(T)\), we propose a numerical algorithm to recover \(\alpha \) through a minimization problem. Furthermore, we establish an upper bound on the error between the exact and recovered values of \(\alpha \) and perform numerical simulations in two and three dimensional cases.

从大时间测量中恢复多孔介质方程中的扩散系数
本文讨论了具有多向指数\(\gamma >1\)和扩散系数\(\alpha >0\)的多孔介质随时间变化方程\(u_{t} - \alpha \Delta u^{\gamma }= 0\)。给定\(\gamma \)的值和解决方案\(u\)在很长时间内\(T\),我们的目标是在不知道初始数据\(u(0)\)的情况下确定参数\(\alpha \)。利用\(u(T)\)满足的渐近不等式,我们提出了一种通过最小化问题恢复\(\alpha \)的数值算法。此外,我们建立了\(\alpha \)精确值和恢复值之间误差的上界,并在二维和三维情况下进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信