On the analysis of eruptive events with non-radial evolution

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Abril Sahade, M. Valeria Sieyra, Mariana Cécere
{"title":"On the analysis of eruptive events with non-radial evolution","authors":"Abril Sahade,&nbsp;M. Valeria Sieyra,&nbsp;Mariana Cécere","doi":"10.1007/s10509-025-04491-y","DOIUrl":null,"url":null,"abstract":"<div><p>Coronal mass ejections (CMEs) are major drivers of space weather disturbances, and their deflection from the radial direction critically affects their potential impact on Earth. While the influence of the surrounding magnetic field in guiding CME trajectories is well established, accurately predicting non-radial propagation remains a challenge. In this work, we introduce and compare recently developed techniques for analyzing the early deflection of eruptive events. We revisit a largely deflected prominence-CME event of 2010 December 16 using an improved tracking framework and a new application of the topological path method. Our results suggest the deflection of the eruption is dominated by the channeling of the magnetic field lines. This study offers new physical insight into CME guidance mechanisms and validates the predictive capability of the topological path, highlighting its potential as a diagnostic tool for estimating the propagation direction of strongly deflected events.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04491-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Coronal mass ejections (CMEs) are major drivers of space weather disturbances, and their deflection from the radial direction critically affects their potential impact on Earth. While the influence of the surrounding magnetic field in guiding CME trajectories is well established, accurately predicting non-radial propagation remains a challenge. In this work, we introduce and compare recently developed techniques for analyzing the early deflection of eruptive events. We revisit a largely deflected prominence-CME event of 2010 December 16 using an improved tracking framework and a new application of the topological path method. Our results suggest the deflection of the eruption is dominated by the channeling of the magnetic field lines. This study offers new physical insight into CME guidance mechanisms and validates the predictive capability of the topological path, highlighting its potential as a diagnostic tool for estimating the propagation direction of strongly deflected events.

非径向演化的喷发事件分析
日冕物质抛射(cme)是空间天气扰动的主要驱动因素,其偏离径向严重影响其对地球的潜在影响。虽然周围磁场对CME轨迹的影响已经确定,但准确预测非径向传播仍然是一个挑战。在这项工作中,我们介绍并比较了最近发展的分析喷发事件早期偏转的技术。我们使用改进的跟踪框架和拓扑路径方法的新应用重新审视了2010年12月16日发生的日珥- cme事件。我们的结果表明,火山爆发的偏转是由磁力线的通道控制的。这项研究为CME的引导机制提供了新的物理见解,并验证了拓扑路径的预测能力,突出了其作为估计强偏转事件传播方向的诊断工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信