Mechanical properties and failure mechanisms of self-piercing riveted aluminum alloys with different edge distances

IF 3.8 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Jin-Rui Duan, Chao Chen
{"title":"Mechanical properties and failure mechanisms of self-piercing riveted aluminum alloys with different edge distances","authors":"Jin-Rui Duan,&nbsp;Chao Chen","doi":"10.1007/s40436-024-00541-w","DOIUrl":null,"url":null,"abstract":"<div><p>Self-piercing riveting (SPR) is widely used in thin-walled structures and the automotive industry to join aluminum alloy sheets. Lightweight vehicles are a common trend in the automotive industry. To further reduce vehicle weight and ensure the strength of the AA5052 aluminum alloy thin-sheet joint, the optimization of the amount of material used in the joint should be considered. The effect of the riveting position on the joint strength was investigated using riveting methods with different edge distances. Five edge distances (4.5, 6.5, 8.5, 10.5 and 12.5 mm) along the longitudinal direction were used in the investigations. In addition, a shear test was performed to analyze the mechanical properties of the joint. The results showed that as the edge distance decreased, the damage pattern of the joint changed from rivet pulling out of the plate to tearing at the upper plate edge, and as the edge pitch increased, the lap shear strength gradually increased. The minimum edge distance required to meet the deformation strength of the joint was 8.5 mm. This study provides a reference for reducing the amount of joint material, achieving lightweight production of automobiles, and failure repair of joints.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"13 3","pages":"655 - 667"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00541-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Self-piercing riveting (SPR) is widely used in thin-walled structures and the automotive industry to join aluminum alloy sheets. Lightweight vehicles are a common trend in the automotive industry. To further reduce vehicle weight and ensure the strength of the AA5052 aluminum alloy thin-sheet joint, the optimization of the amount of material used in the joint should be considered. The effect of the riveting position on the joint strength was investigated using riveting methods with different edge distances. Five edge distances (4.5, 6.5, 8.5, 10.5 and 12.5 mm) along the longitudinal direction were used in the investigations. In addition, a shear test was performed to analyze the mechanical properties of the joint. The results showed that as the edge distance decreased, the damage pattern of the joint changed from rivet pulling out of the plate to tearing at the upper plate edge, and as the edge pitch increased, the lap shear strength gradually increased. The minimum edge distance required to meet the deformation strength of the joint was 8.5 mm. This study provides a reference for reducing the amount of joint material, achieving lightweight production of automobiles, and failure repair of joints.

不同边距自穿铆接铝合金力学性能及破坏机理
自穿孔铆接(SPR)广泛应用于薄壁结构和汽车工业中连接铝合金板材。轻量化汽车是汽车工业的一个普遍趋势。为了进一步减轻整车自重,保证AA5052铝合金薄板接头的强度,应考虑接头材料用量的优化。采用不同边距的铆接方法,研究了铆接位置对接头强度的影响。沿纵向采用5种边缘距离(4.5、6.5、8.5、10.5和12.5 mm)进行调查。此外,还进行了剪切试验,分析了接头的力学性能。结果表明:随着边距的减小,接头的破坏模式由铆钉拉出板向上板边撕裂转变;随着边距的增大,搭接抗剪强度逐渐增大;满足接头变形强度所需的最小边距为8.5 mm。本研究为减少关节材料用量,实现汽车轻量化生产,以及关节故障修复提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信