On roots of normal operators and extensions of Ando’s Theorem

IF 1 3区 数学 Q1 MATHEMATICS
Hranislav Stanković, Carlos Kubrusly
{"title":"On roots of normal operators and extensions of Ando’s Theorem","authors":"Hranislav Stanković,&nbsp;Carlos Kubrusly","doi":"10.1007/s43034-025-00455-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we extend Ando’s theorem on paranormal operators, which states that if <span>\\(T \\in \\mathfrak {B}(\\mathcal {H})\\)</span> is a paranormal operator and there exists <span>\\(n \\in \\mathbb {N}\\)</span> such that <span>\\(T^n\\)</span> is normal, then <span>\\(T\\)</span> is normal. We generalize this result to the broader classes of <span>\\(k\\)</span>-paranormal operators and absolute-<span>\\(k\\)</span>-paranormal operators. Furthermore, in the case of a separable Hilbert space <span>\\(\\mathcal {H}\\)</span>, we show that if <span>\\(T \\in \\mathfrak {B}(\\mathcal {H})\\)</span> is a <span>\\(k\\)</span>-quasi-paranormal operator for some <span>\\(k \\in \\mathbb {N}\\)</span>, and there exists <span>\\(n \\in \\mathbb {N}\\)</span> such that <span>\\(T^n\\)</span> is normal, then <span>\\(T\\)</span> decomposes as <span>\\(T = T' \\oplus T''\\)</span>, where <span>\\(T'\\)</span> is normal and <span>\\(T''\\)</span> is nilpotent of nil-index at most <span>\\(\\min \\{n,k+1\\}\\)</span>, with either summand potentially absent.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00455-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend Ando’s theorem on paranormal operators, which states that if \(T \in \mathfrak {B}(\mathcal {H})\) is a paranormal operator and there exists \(n \in \mathbb {N}\) such that \(T^n\) is normal, then \(T\) is normal. We generalize this result to the broader classes of \(k\)-paranormal operators and absolute-\(k\)-paranormal operators. Furthermore, in the case of a separable Hilbert space \(\mathcal {H}\), we show that if \(T \in \mathfrak {B}(\mathcal {H})\) is a \(k\)-quasi-paranormal operator for some \(k \in \mathbb {N}\), and there exists \(n \in \mathbb {N}\) such that \(T^n\) is normal, then \(T\) decomposes as \(T = T' \oplus T''\), where \(T'\) is normal and \(T''\) is nilpotent of nil-index at most \(\min \{n,k+1\}\), with either summand potentially absent.

正规算子的根与安藤定理的推广
推广了关于超常算子的Ando定理,证明了如果\(T \in \mathfrak {B}(\mathcal {H})\)是超常算子,且存在\(n \in \mathbb {N}\)使得\(T^n\)是正规的,则\(T\)是正规的。我们将这个结果推广到更广泛的\(k\) -超常算子和绝对- \(k\) -超常算子。进一步,在可分Hilbert空间\(\mathcal {H}\)的情况下,我们证明了如果\(T \in \mathfrak {B}(\mathcal {H})\)对于某些\(k \in \mathbb {N}\)是\(k\) -拟超算子,并且存在\(n \in \mathbb {N}\)使得\(T^n\)是正态的,则\(T\)分解为\(T = T' \oplus T''\),其中\(T'\)是正态的,\(T''\)是至多\(\min \{n,k+1\}\) -索引的幂零,其中任何一个求和都可能不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信