On the pair correlation statistic of sequences with the finite gap property

IF 0.5 4区 数学 Q3 MATHEMATICS
Jasmin Fiedler, Christian Weiss
{"title":"On the pair correlation statistic of sequences with the finite gap property","authors":"Jasmin Fiedler,&nbsp;Christian Weiss","doi":"10.1007/s00013-025-02126-w","DOIUrl":null,"url":null,"abstract":"<div><p>The limiting function <i>f</i>(<i>s</i>) of the pair correlation </p><div><div><span>$$\\begin{aligned} \\frac{1}{N} \\# \\left\\{ 1 \\le i\\ne j\\le N \\bigg \\vert \\left\\Vert x_i - x_j \\right\\Vert \\le \\frac{s}{N} \\right\\} \\end{aligned}$$</span></div></div><p>for a sequence <span>\\((x_N)_{N \\in \\mathbb {N}}\\)</span> on the torus <span>\\(\\mathbb {T}^1\\)</span> is said to be Poissonian if it exists and equals 2<i>s</i> for all <span>\\(s \\ge 0\\)</span>. For instance, independent, uniformly distributed random variables generically have this property. Obviously <i>f</i>(<i>s</i>) is always a monotonic function if existent. There are only few examples of sequences where <span>\\(f(s) \\ne 2s\\)</span>, but where the limit can still be explicitly calculated. Therefore, it is an open question which types of functions <i>f</i>(<i>s</i>) can or cannot appear here. In this note, we give a partial answer on this question by addressing the case that the number of different gap lengths in the sequence is finite and showing that <i>f</i> cannot be continuous then.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 1","pages":"107 - 113"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02126-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02126-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The limiting function f(s) of the pair correlation

$$\begin{aligned} \frac{1}{N} \# \left\{ 1 \le i\ne j\le N \bigg \vert \left\Vert x_i - x_j \right\Vert \le \frac{s}{N} \right\} \end{aligned}$$

for a sequence \((x_N)_{N \in \mathbb {N}}\) on the torus \(\mathbb {T}^1\) is said to be Poissonian if it exists and equals 2s for all \(s \ge 0\). For instance, independent, uniformly distributed random variables generically have this property. Obviously f(s) is always a monotonic function if existent. There are only few examples of sequences where \(f(s) \ne 2s\), but where the limit can still be explicitly calculated. Therefore, it is an open question which types of functions f(s) can or cannot appear here. In this note, we give a partial answer on this question by addressing the case that the number of different gap lengths in the sequence is finite and showing that f cannot be continuous then.

有限间隙序列的对相关统计量
对于环面\(\mathbb {T}^1\)上的序列\((x_N)_{N \in \mathbb {N}}\),对相关$$\begin{aligned} \frac{1}{N} \# \left\{ 1 \le i\ne j\le N \bigg \vert \left\Vert x_i - x_j \right\Vert \le \frac{s}{N} \right\} \end{aligned}$$的极限函数f(s)如果存在,则称为泊松函数,并且对所有\(s \ge 0\)都等于2s。例如,独立的,均匀分布的随机变量一般都有这个性质。显然,如果f(s)存在,它总是一个单调函数。只有少数例子的序列\(f(s) \ne 2s\),但其中的极限仍然可以显式计算。因此,哪种类型的函数f(s)能出现或不能出现是一个悬而未决的问题。在这篇笔记中,我们通过处理序列中不同间隙长度的数量有限的情况,并证明f不能连续,给出了这个问题的部分答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信