{"title":"Combining LASSO-type Methods with a Smooth Transition Random Forest","authors":"Alexandre L. D. Gandini, Flavio A. Ziegelmann","doi":"10.1007/s40745-024-00541-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose a novel hybrid method for the estimation of regression models, which is based on a combination of LASSO-type methods and smooth transition (STR) random forests. Tree-based regression models are known for their flexibility and skills to learn even very nonlinear patterns. The STR-Tree model introduces smoothness into traditional splitting nodes, leading to a non-binary labeling, which can be interpreted as a group membership degree for each observation. Our approach involves two steps. First, we fit a penalized linear regression using LASSO-type methods. Then, we estimate an STR random forest on the residuals from the first step, using the original covariates. This dual-step process allows us to capture any significant linear relationships in the data generating process through a parametric approach, and then addresses nonlinearities with a flexible model. We conducted numerical studies with both simulated and real data to demonstrate our method’s effectiveness. Our findings indicate that our proposal offers superior predictive power, particularly in datasets with both linear and nonlinear characteristics, when compared to traditional benchmarks.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 3","pages":"899 - 928"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00541-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a novel hybrid method for the estimation of regression models, which is based on a combination of LASSO-type methods and smooth transition (STR) random forests. Tree-based regression models are known for their flexibility and skills to learn even very nonlinear patterns. The STR-Tree model introduces smoothness into traditional splitting nodes, leading to a non-binary labeling, which can be interpreted as a group membership degree for each observation. Our approach involves two steps. First, we fit a penalized linear regression using LASSO-type methods. Then, we estimate an STR random forest on the residuals from the first step, using the original covariates. This dual-step process allows us to capture any significant linear relationships in the data generating process through a parametric approach, and then addresses nonlinearities with a flexible model. We conducted numerical studies with both simulated and real data to demonstrate our method’s effectiveness. Our findings indicate that our proposal offers superior predictive power, particularly in datasets with both linear and nonlinear characteristics, when compared to traditional benchmarks.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.