Explainable LightGBM model for predicting compressive strength of silica fume modified high-volume fly ash concrete

Q2 Engineering
Anish Kumar, Sameer Sen, Sanjeev Sinha, Bimal Kumar, Chaitanya Nidhi
{"title":"Explainable LightGBM model for predicting compressive strength of silica fume modified high-volume fly ash concrete","authors":"Anish Kumar,&nbsp;Sameer Sen,&nbsp;Sanjeev Sinha,&nbsp;Bimal Kumar,&nbsp;Chaitanya Nidhi","doi":"10.1007/s42107-025-01411-x","DOIUrl":null,"url":null,"abstract":"<div><p>This research introduces a robust machine learning framework for estimating the compressive strength of concrete, utilizing a Light Gradient Boosting Machine (LightGBM) regression algorithm. The model was developed using a diverse dataset that included different mix proportions of fly ash, silica fume, cement, fine and coarse aggregates, along with varying curing durations. After a thorough hyperparameter optimization process, the final model incorporated a learning rate of 0.1, 200 boosting iterations, an unrestricted tree depth, and 31 maximum leaf nodes. The model demonstrated strong predictive accuracy, achieving an R² value of 0.99 on the training set and 0.97 on the testing set, with corresponding Mean Absolute Errors (MAE) of 0.70 MPa and 1.35 MPa. Feature importance derived from SHAP values highlighted curing duration, silica fume percentage, and cement content as primary contributors to strength outcomes. Additional interpretation through partial dependence plots and monotonicity analysis showed that the model’s predictions aligned with expected trends in concrete behavior. Sensitivity testing indicated that changes in silica fume content and coarse aggregate proportion produced the most significant fluctuations in predicted strength.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 9","pages":"3951 - 3968"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01411-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces a robust machine learning framework for estimating the compressive strength of concrete, utilizing a Light Gradient Boosting Machine (LightGBM) regression algorithm. The model was developed using a diverse dataset that included different mix proportions of fly ash, silica fume, cement, fine and coarse aggregates, along with varying curing durations. After a thorough hyperparameter optimization process, the final model incorporated a learning rate of 0.1, 200 boosting iterations, an unrestricted tree depth, and 31 maximum leaf nodes. The model demonstrated strong predictive accuracy, achieving an R² value of 0.99 on the training set and 0.97 on the testing set, with corresponding Mean Absolute Errors (MAE) of 0.70 MPa and 1.35 MPa. Feature importance derived from SHAP values highlighted curing duration, silica fume percentage, and cement content as primary contributors to strength outcomes. Additional interpretation through partial dependence plots and monotonicity analysis showed that the model’s predictions aligned with expected trends in concrete behavior. Sensitivity testing indicated that changes in silica fume content and coarse aggregate proportion produced the most significant fluctuations in predicted strength.

硅灰改性大体积粉煤灰混凝土抗压强度的可解释LightGBM模型
本研究引入了一个鲁棒的机器学习框架,用于估计混凝土的抗压强度,利用光梯度增强机(LightGBM)回归算法。该模型是使用多种数据集开发的,其中包括粉煤灰、硅灰、水泥、细骨料和粗骨料的不同混合比例,以及不同的养护持续时间。经过彻底的超参数优化过程,最终模型的学习率为0.1,提升迭代次数为200次,树深度不受限制,最大叶节点为31个。该模型具有较强的预测精度,在训练集和测试集上的R²值分别为0.99和0.97,对应的平均绝对误差(MAE)分别为0.70 MPa和1.35 MPa。从SHAP值中得出的特征重要性强调了固化时间、硅灰百分比和水泥含量是强度结果的主要贡献者。通过部分依赖图和单调性分析的进一步解释表明,该模型的预测与具体行为的预期趋势一致。敏感性测试表明,硅灰含量和粗骨料比例的变化对预测强度产生了最显著的波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信