Jihye Lee, Seungryong Cho, Jiseok Kim, Jinhyung Kwon, Donghyuk Shin, Chanjoong Kim, Hyeonggon Kim, Young-su Kim
{"title":"Development of 3D-scan-based efficiency calibration method of complex-shaped materials in gamma spectrometry","authors":"Jihye Lee, Seungryong Cho, Jiseok Kim, Jinhyung Kwon, Donghyuk Shin, Chanjoong Kim, Hyeonggon Kim, Young-su Kim","doi":"10.1007/s40042-025-01395-6","DOIUrl":null,"url":null,"abstract":"<div><p>To address gamma spectrometry on complex-shaped materials when the conventional method based on certified reference materials is impractical, we propose a new 3D-scan-based source modeling method for reflecting geometry of complex-shaped materials. Various complex-shaped materials were selected, scanned with tailored methods depending on the scanned objects, and the scanned 3D data were integrated into the source term models for Monte Carlo simulation. The developed method has been confirmed that all complex-shaped materials thus created can be cast into the Monte Carlo simulation toolkit Geant4 as source terms. It produced mesh deviations of all samples within 1 mm, validating its utility for practical applications. The developed method was experimentally validated using CRM, proving the accuracy of the method. The proposed method enables a comprehensive efficiency calibration for radioactivity analysis of complex-shaped materials without the need for destructive preprocessing.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"87 2","pages":"225 - 235"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-025-01395-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To address gamma spectrometry on complex-shaped materials when the conventional method based on certified reference materials is impractical, we propose a new 3D-scan-based source modeling method for reflecting geometry of complex-shaped materials. Various complex-shaped materials were selected, scanned with tailored methods depending on the scanned objects, and the scanned 3D data were integrated into the source term models for Monte Carlo simulation. The developed method has been confirmed that all complex-shaped materials thus created can be cast into the Monte Carlo simulation toolkit Geant4 as source terms. It produced mesh deviations of all samples within 1 mm, validating its utility for practical applications. The developed method was experimentally validated using CRM, proving the accuracy of the method. The proposed method enables a comprehensive efficiency calibration for radioactivity analysis of complex-shaped materials without the need for destructive preprocessing.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.