Two solutions for fractional Schrödinger-Poisson system involving a degenerate Kirchhoff term

IF 1.6 3区 数学 Q1 MATHEMATICS
Conghui Shi, Lifeng Guo, Binlin Zhang
{"title":"Two solutions for fractional Schrödinger-Poisson system involving a degenerate Kirchhoff term","authors":"Conghui Shi,&nbsp;Lifeng Guo,&nbsp;Binlin Zhang","doi":"10.1007/s13324-025-01094-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the multiplicity of solutions for the following nonlinear fractional Schrödinger-Poisson system of Kirchhoff type: </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} [u]_{s}^{2(\\theta -1)}(-\\Delta )^{s}u+ \\phi (x)u = f(x)|u|^{r-2}u + \\lambda \\frac{|u|^{q - 2} u}{|x|^{\\alpha }}, &amp; \\text {in} \\,\\,\\Omega , \\\\ (-\\Delta )^{t} \\phi = u^2, &amp; \\text {in} \\,\\,\\Omega ,\\\\ u=\\phi =0, &amp; \\text {in} ~\\mathbb {R}^{N} \\backslash \\Omega , \\end{array} \\right. \\end{aligned}$$</span></div></div><p>where <span>\\(s, t\\in (0,1)\\)</span>, <span>\\(\\Omega \\subset \\mathbb {R}^N\\)</span> is a smooth bounded domain containing 0 with Lipschitz boundary, <span>\\(\\left( -\\Delta \\right) ^{\\gamma }\\)</span> <span>\\((\\gamma =s,t)\\)</span> is the fractional Laplace operator, <span>\\(\\lambda \\)</span> is a positive parameter, <span>\\(0\\le \\alpha&lt;2s&lt;N\\)</span>, <span>\\(2&lt;r&lt;2\\theta&lt;4&lt;q&lt;2_{\\alpha }^{*}\\)</span> and <span>\\(f(x)\\in L^{\\frac{2_\\alpha ^*}{2_\\alpha ^*-r}}(\\Omega )\\)</span> is positive almost everywhere in <span>\\({\\Omega }\\)</span>. By using variational methods, we get over some tricky difficulties stemming from degenerate feature of Kirchhoff term. As a result, by employing the Nehari manifold method, under some certain conditions, we prove that the above system has at least two distinct positive solutions for <span>\\(\\lambda \\)</span> small.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01094-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the multiplicity of solutions for the following nonlinear fractional Schrödinger-Poisson system of Kirchhoff type:

$$\begin{aligned} \left\{ \begin{array}{ll} [u]_{s}^{2(\theta -1)}(-\Delta )^{s}u+ \phi (x)u = f(x)|u|^{r-2}u + \lambda \frac{|u|^{q - 2} u}{|x|^{\alpha }}, & \text {in} \,\,\Omega , \\ (-\Delta )^{t} \phi = u^2, & \text {in} \,\,\Omega ,\\ u=\phi =0, & \text {in} ~\mathbb {R}^{N} \backslash \Omega , \end{array} \right. \end{aligned}$$

where \(s, t\in (0,1)\), \(\Omega \subset \mathbb {R}^N\) is a smooth bounded domain containing 0 with Lipschitz boundary, \(\left( -\Delta \right) ^{\gamma }\) \((\gamma =s,t)\) is the fractional Laplace operator, \(\lambda \) is a positive parameter, \(0\le \alpha<2s<N\), \(2<r<2\theta<4<q<2_{\alpha }^{*}\) and \(f(x)\in L^{\frac{2_\alpha ^*}{2_\alpha ^*-r}}(\Omega )\) is positive almost everywhere in \({\Omega }\). By using variational methods, we get over some tricky difficulties stemming from degenerate feature of Kirchhoff term. As a result, by employing the Nehari manifold method, under some certain conditions, we prove that the above system has at least two distinct positive solutions for \(\lambda \) small.

涉及简并Kirchhoff项的分数阶Schrödinger-Poisson系统的两个解
本文研究了以下Kirchhoff型非线性分数阶Schrödinger-Poisson系统解的多重性:$$\begin{aligned} \left\{ \begin{array}{ll} [u]_{s}^{2(\theta -1)}(-\Delta )^{s}u+ \phi (x)u = f(x)|u|^{r-2}u + \lambda \frac{|u|^{q - 2} u}{|x|^{\alpha }}, & \text {in} \,\,\Omega , \\ (-\Delta )^{t} \phi = u^2, & \text {in} \,\,\Omega ,\\ u=\phi =0, & \text {in} ~\mathbb {R}^{N} \backslash \Omega , \end{array} \right. \end{aligned}$$,其中\(s, t\in (0,1)\)、\(\Omega \subset \mathbb {R}^N\)是含0的光滑有界Lipschitz边界,\(\left( -\Delta \right) ^{\gamma }\)、\((\gamma =s,t)\)是分数阶拉普拉斯算子,\(\lambda \)是一个正参数,\(0\le \alpha<2s<N\)、\(2<r<2\theta<4<q<2_{\alpha }^{*}\)和\(f(x)\in L^{\frac{2_\alpha ^*}{2_\alpha ^*-r}}(\Omega )\)在\({\Omega }\)中几乎处处为正。利用变分方法,克服了基尔霍夫项的简并性所引起的一些棘手问题。因此,利用Nehari流形方法,在一定条件下,我们证明了上述系统对于\(\lambda \)小至少有两个不同的正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信