{"title":"Mobile application review summarization using chain of density prompting","authors":"Shristi Shrestha, Anas Mahmoud","doi":"10.1007/s10515-025-00533-5","DOIUrl":null,"url":null,"abstract":"<div><p>Mobile app users commonly rely on app store ratings and reviews to find apps that suit their needs. However, the sheer volume of reviews available on app stores can lead to information overload, thus impeding users’ ability to make informed app selection decisions. To overcome this limitation, in this paper, we leverage Large Language Models (LLMs) to summarize mobile app reviews. In particular, we use the Chain of Density (CoD) prompt to guide OpenAI GPT-4 to generate abstractive, semantically dense, and readable summaries of mobile app reviews. The CoD prompt is engineered to iteratively extract salient entities from the source text and fuse them into a fixed-length summary. We evaluate the performance of our approach using a large dataset of mobile app reviews. We further conduct an empirical evaluation with 48 study participants to assess the readability of the generated CoD summaries. Our results show that an altered CoD prompt can correctly identify the main themes in user reviews and consolidate them into a natural language summary that is intended for end-user consumption. The prompt also manages to maintain the readability of the generated summaries while increasing their density. Our work in this paper aims to substantially improve mobile app users’ experience by providing an effective mechanism for summarizing important user feedback in the review stream.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-025-00533-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile app users commonly rely on app store ratings and reviews to find apps that suit their needs. However, the sheer volume of reviews available on app stores can lead to information overload, thus impeding users’ ability to make informed app selection decisions. To overcome this limitation, in this paper, we leverage Large Language Models (LLMs) to summarize mobile app reviews. In particular, we use the Chain of Density (CoD) prompt to guide OpenAI GPT-4 to generate abstractive, semantically dense, and readable summaries of mobile app reviews. The CoD prompt is engineered to iteratively extract salient entities from the source text and fuse them into a fixed-length summary. We evaluate the performance of our approach using a large dataset of mobile app reviews. We further conduct an empirical evaluation with 48 study participants to assess the readability of the generated CoD summaries. Our results show that an altered CoD prompt can correctly identify the main themes in user reviews and consolidate them into a natural language summary that is intended for end-user consumption. The prompt also manages to maintain the readability of the generated summaries while increasing their density. Our work in this paper aims to substantially improve mobile app users’ experience by providing an effective mechanism for summarizing important user feedback in the review stream.
期刊介绍:
This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes.
Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.