Two-dimensional Calderón problem and flat metrics

IF 1.6 3区 数学 Q1 MATHEMATICS
Vladimir A. Sharafutdinov
{"title":"Two-dimensional Calderón problem and flat metrics","authors":"Vladimir A. Sharafutdinov","doi":"10.1007/s13324-025-01112-3","DOIUrl":null,"url":null,"abstract":"<div><p>For a compact Riemannian manifold (<i>M</i>, <i>g</i>) with boundary <span>\\(\\partial M\\)</span>, the Dirichlet-to-Neumann operator <span>\\(\\Lambda _g:C^\\infty (\\partial M)\\longrightarrow C^\\infty (\\partial M)\\)</span> is defined by <span>\\(\\Lambda _gf=\\left. \\frac{\\partial u}{\\partial \\nu }\\right| _{\\partial M}\\)</span>, where <span>\\(\\nu \\)</span> is the unit outer normal vector to the boundary and <i>u</i> is the solution to the Dirichlet problem <span>\\(\\Delta _gu=0,\\ u|_{\\partial M}=f\\)</span>. Let <span>\\(g_\\partial \\)</span> be the Riemannian metric on <span>\\(\\partial M\\)</span> induced by <i>g</i>. The Calderón problem is posed as follows: To what extent is (<i>M</i>, <i>g</i>) determined by the data <span>\\((\\partial M,g_\\partial ,\\Lambda _g)\\)</span>? We prove the uniqueness theorem: A compact connected two-dimensional Riemannian manifold (<i>M</i>, <i>g</i>) with non-empty boundary is determined by the data <span>\\((\\partial M,g_\\partial ,\\Lambda _g)\\)</span> uniquely up to conformal equivalence.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01112-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a compact Riemannian manifold (Mg) with boundary \(\partial M\), the Dirichlet-to-Neumann operator \(\Lambda _g:C^\infty (\partial M)\longrightarrow C^\infty (\partial M)\) is defined by \(\Lambda _gf=\left. \frac{\partial u}{\partial \nu }\right| _{\partial M}\), where \(\nu \) is the unit outer normal vector to the boundary and u is the solution to the Dirichlet problem \(\Delta _gu=0,\ u|_{\partial M}=f\). Let \(g_\partial \) be the Riemannian metric on \(\partial M\) induced by g. The Calderón problem is posed as follows: To what extent is (Mg) determined by the data \((\partial M,g_\partial ,\Lambda _g)\)? We prove the uniqueness theorem: A compact connected two-dimensional Riemannian manifold (Mg) with non-empty boundary is determined by the data \((\partial M,g_\partial ,\Lambda _g)\) uniquely up to conformal equivalence.

Abstract Image

二维Calderón问题和平面度量
对于边界为\(\partial M\)的紧致黎曼流形(M, g), Dirichlet-to- neumann算子\(\Lambda _g:C^\infty (\partial M)\longrightarrow C^\infty (\partial M)\)定义为\(\Lambda _gf=\left. \frac{\partial u}{\partial \nu }\right| _{\partial M}\),其中\(\nu \)是边界的单位外法向量,u是Dirichlet问题的解\(\Delta _gu=0,\ u|_{\partial M}=f\)。设\(g_\partial \)为g诱导的\(\partial M\)上的黎曼度规。Calderón问题提出如下:(M, g)在多大程度上由数据\((\partial M,g_\partial ,\Lambda _g)\)决定?证明了具有非空边界的紧连通二维黎曼流形(M, g)的唯一性定理,该唯一性定理由数据\((\partial M,g_\partial ,\Lambda _g)\)确定,该数据唯一地达到保角等价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信