Data-Based Approach to Hyperelastic Membranes

IF 1.4 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Claudia Grabs, Werner Wirges
{"title":"Data-Based Approach to Hyperelastic Membranes","authors":"Claudia Grabs,&nbsp;Werner Wirges","doi":"10.1007/s10659-025-10155-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study large deformations of hyperelastic membranes using a purely two-dimensional formulation derived from basic balance principles within a modern geometric setting, ensuring a framework that is independent of an underlying three-dimensional formulation. To assess the predictive capabilities of membrane theory, we compare numerical solutions to experimental data from axisymmetric deformations of a silicone rubber film. Five hyperelastic models—Neo-Hookean, Mooney-Rivlin, Gent, Yeoh, and Ogden—are evaluated by fitting their material parameters to our experimental data using TensorFlow. Our results provide a systematic comparison of these models based on their accuracy in capturing observed deformations, establishing a framework for integrating theory, experiment, and data-based parameter identification.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10155-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study large deformations of hyperelastic membranes using a purely two-dimensional formulation derived from basic balance principles within a modern geometric setting, ensuring a framework that is independent of an underlying three-dimensional formulation. To assess the predictive capabilities of membrane theory, we compare numerical solutions to experimental data from axisymmetric deformations of a silicone rubber film. Five hyperelastic models—Neo-Hookean, Mooney-Rivlin, Gent, Yeoh, and Ogden—are evaluated by fitting their material parameters to our experimental data using TensorFlow. Our results provide a systematic comparison of these models based on their accuracy in capturing observed deformations, establishing a framework for integrating theory, experiment, and data-based parameter identification.

Abstract Image

基于数据的超弹性膜研究方法
我们研究大变形的超弹性膜使用纯二维公式推导出的基本平衡原则在现代几何设置,确保框架是独立于一个潜在的三维公式。为了评估膜理论的预测能力,我们比较了硅橡胶薄膜轴对称变形的数值解和实验数据。五个超弹性模型- neo - hookean, Mooney-Rivlin, Gent, Yeoh和ogden -通过使用TensorFlow将其材料参数拟合到我们的实验数据来评估。我们的研究结果对这些模型进行了系统的比较,基于它们在捕获观察到的变形方面的准确性,建立了一个整合理论、实验和基于数据的参数识别的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信