Effect of thermo-vibration assisted multi-pass with variable parameters on incremental forming quality of magnesium alloy

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Chunjian Su, Daolong Zhang, Luhui Li, Yongxu Chen, Hongen Wei, Hening Sun, Dong Zhao, Sumin Guo, Kai Zhang
{"title":"Effect of thermo-vibration assisted multi-pass with variable parameters on incremental forming quality of magnesium alloy","authors":"Chunjian Su,&nbsp;Daolong Zhang,&nbsp;Luhui Li,&nbsp;Yongxu Chen,&nbsp;Hongen Wei,&nbsp;Hening Sun,&nbsp;Dong Zhao,&nbsp;Sumin Guo,&nbsp;Kai Zhang","doi":"10.1007/s12289-025-01922-7","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium alloys are known for their poor plasticity at room temperature, making them difficult to form. Typically, heating is required to enhance their formability. However, even heat-assisted forming has limitations when it comes to improving the quality of the formed components. To further enhance the forming quality of magnesium alloys, this study explores the use of vibration in conjunction with heating, specifically through a multi-pass incremental forming process for magnesium alloys under combined thermo-vibratory effects. The research integrates thermal-vibration parameters with forming process parameters for comprehensive analysis. Initially, orthogonal experiments were conducted to examine the influence of different thermal-vibration parameters, such as temperature, vibration frequency, and amplitude, on the wall thickness and geometric accuracy of the workpiece. This analysis led to the determination of an optimal combination of thermal-vibration parameters. Subsequently, under these optimal thermal-vibration conditions, the effects of single-process parameter variations, including inter-pass angle, tool diameter, and layer spacing were examined, and their interactions on forming quality. Experimental validation confirmed the accuracy of the simulation model used in this research. The results revealed that the optimal thermal-vibration parameter combination consists of a forming temperature of 250 °C, a vibration frequency of 30 kHz, and an amplitude of 0.01 mm. Under these conditions, the minimum wall thickness of the workpiece improved by 3.24%. Furthermore, among the process parameters, the inter-pass angle had the most significant impact on forming quality, followed by the tool diameter, while layer spacing showed the least influence.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01922-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium alloys are known for their poor plasticity at room temperature, making them difficult to form. Typically, heating is required to enhance their formability. However, even heat-assisted forming has limitations when it comes to improving the quality of the formed components. To further enhance the forming quality of magnesium alloys, this study explores the use of vibration in conjunction with heating, specifically through a multi-pass incremental forming process for magnesium alloys under combined thermo-vibratory effects. The research integrates thermal-vibration parameters with forming process parameters for comprehensive analysis. Initially, orthogonal experiments were conducted to examine the influence of different thermal-vibration parameters, such as temperature, vibration frequency, and amplitude, on the wall thickness and geometric accuracy of the workpiece. This analysis led to the determination of an optimal combination of thermal-vibration parameters. Subsequently, under these optimal thermal-vibration conditions, the effects of single-process parameter variations, including inter-pass angle, tool diameter, and layer spacing were examined, and their interactions on forming quality. Experimental validation confirmed the accuracy of the simulation model used in this research. The results revealed that the optimal thermal-vibration parameter combination consists of a forming temperature of 250 °C, a vibration frequency of 30 kHz, and an amplitude of 0.01 mm. Under these conditions, the minimum wall thickness of the workpiece improved by 3.24%. Furthermore, among the process parameters, the inter-pass angle had the most significant impact on forming quality, followed by the tool diameter, while layer spacing showed the least influence.

Abstract Image

热振动辅助变参数多道次对镁合金增量成形质量的影响
镁合金在室温下的可塑性很差,这使得它们难以成形。通常,需要加热来增强其成形性。然而,即使是热辅助成形也有局限性,当它涉及到提高成形部件的质量。为了进一步提高镁合金的成形质量,本研究探索了振动与加热相结合的应用,特别是通过在热-振动联合作用下的镁合金多道次增量成形工艺。该研究将热振动参数与成形工艺参数相结合,进行综合分析。首先,通过正交试验研究了温度、振动频率和振幅等不同热振动参数对工件壁厚和几何精度的影响。通过分析,确定了热振动参数的最佳组合。随后,在这些最佳热振动条件下,研究了单工序参数变化(包括道间角、刀具直径和层间距)对成形质量的影响,以及它们之间的相互作用。实验验证了所采用仿真模型的准确性。结果表明:成形温度为250℃,振动频率为30 kHz,振幅为0.01 mm,热振参数组合最优;在此条件下,工件的最小壁厚提高了3.24%。在各工艺参数中,孔间角对成形质量影响最大,刀具直径次之,层间距影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信