Reinforcement of C-NFO@GDY Membranes via the Synergistic Effect of the Graphdiyne Honeycomb Nanostructure and Electronegativity for High-Efficiency Oil-in-Water Emulsion Separation

IF 21.3 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yanchun Pei, Xueyan Wu, Zhichao Ren, Yan Lv, Rui Xue, Jixi Guo, Dianzeng Jia
{"title":"Reinforcement of C-NFO@GDY Membranes via the Synergistic Effect of the Graphdiyne Honeycomb Nanostructure and Electronegativity for High-Efficiency Oil-in-Water Emulsion Separation","authors":"Yanchun Pei,&nbsp;Xueyan Wu,&nbsp;Zhichao Ren,&nbsp;Yan Lv,&nbsp;Rui Xue,&nbsp;Jixi Guo,&nbsp;Dianzeng Jia","doi":"10.1007/s42765-025-00549-2","DOIUrl":null,"url":null,"abstract":"<div><p>Electrospun fiber membranes enable oil–water emulsion separation via tunable morphology and chemistry, yet most face an efficiency–permeability trade-off where enhancing one compromises the other. Herein, optimized membranes (C-NFO@GDY) are synthesized with a uniform honeycomb nanostructure of graphdiyne (GDY) on flexible coal-based preoxidized fibers (C-NFO) through the Glaser‒Hay coupling reaction. The honeycomb nanostructure of GDY effectively disperses external stress on the C-NFO fibers, increasing the tensile strength from 2.8 to 3.2 MPa. In addition, the nanostructure enhances hydration layer formation kinetics, achieving superhydrophilicity (0°) and underwater superoleophobicity (&gt; 150°) of the membrane. When tested against three surfactant-stabilized emulsions (cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyoxyethylene sorbitan monooleate (Tween 80)), the membranes demonstrated separation fluxes of 2936 L/(m<sup>2</sup> h), 2149 L/(m<sup>2</sup> h), and 1855 L/(m<sup>2</sup> h), and the corresponding separation efficiencies were 99.6%, 96.6%, and 93.1%. For CTAB-stabilized emulsions, the C-NFO@GDY membrane (zeta potential: − 65.2 mV) exhibits strong electrostatic attraction with cationic surfactants, achieving a high flux of 2936 L/(m<sup>2</sup> h) and a separation efficiency of 99.6%, surpassing those of recently reported MXene and PANI composites under identical conditions. Overall, the synergy between honeycomb nanostructure and electronegativity of GDY overcomes the flux–efficiency trade-off, offering new ideas for the preparation of oil–water separation membranes.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 4","pages":"1195 - 1207"},"PeriodicalIF":21.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00549-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrospun fiber membranes enable oil–water emulsion separation via tunable morphology and chemistry, yet most face an efficiency–permeability trade-off where enhancing one compromises the other. Herein, optimized membranes (C-NFO@GDY) are synthesized with a uniform honeycomb nanostructure of graphdiyne (GDY) on flexible coal-based preoxidized fibers (C-NFO) through the Glaser‒Hay coupling reaction. The honeycomb nanostructure of GDY effectively disperses external stress on the C-NFO fibers, increasing the tensile strength from 2.8 to 3.2 MPa. In addition, the nanostructure enhances hydration layer formation kinetics, achieving superhydrophilicity (0°) and underwater superoleophobicity (> 150°) of the membrane. When tested against three surfactant-stabilized emulsions (cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyoxyethylene sorbitan monooleate (Tween 80)), the membranes demonstrated separation fluxes of 2936 L/(m2 h), 2149 L/(m2 h), and 1855 L/(m2 h), and the corresponding separation efficiencies were 99.6%, 96.6%, and 93.1%. For CTAB-stabilized emulsions, the C-NFO@GDY membrane (zeta potential: − 65.2 mV) exhibits strong electrostatic attraction with cationic surfactants, achieving a high flux of 2936 L/(m2 h) and a separation efficiency of 99.6%, surpassing those of recently reported MXene and PANI composites under identical conditions. Overall, the synergy between honeycomb nanostructure and electronegativity of GDY overcomes the flux–efficiency trade-off, offering new ideas for the preparation of oil–water separation membranes.

Graphical Abstract

石墨烯蜂窝纳米结构与电负性协同作用增强C-NFO@GDY膜高效分离油水乳液
静电纺丝纤维膜通过可调的形态和化学成分实现油水乳液分离,但大多数膜都面临效率和渗透率之间的权衡,提高其中一个会牺牲另一个。本文通过Glaser-Hay偶联反应在柔性煤基预氧化纤维(C-NFO)上合成了具有均匀蜂窝状纳米结构的石墨炔(GDY)优化膜(C-NFO@GDY)。GDY的蜂窝纳米结构有效地分散了C-NFO纤维的外部应力,使其抗拉强度从2.8 MPa提高到3.2 MPa。此外,纳米结构增强了水合层形成动力学,实现了膜的超亲水性(0°)和水下超疏油性(> 150°)。对三种表面活性剂稳定的乳剂(十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)和聚氧乙烯山梨糖单油酸酯(Tween 80))进行测试,膜的分离通量分别为2936 L/(m2 h)、2149 L/(m2 h)和1855 L/(m2 h),分离效率分别为99.6%、96.6%和93.1%。对于ctab稳定的乳液,C-NFO@GDY膜(zeta电位:- 65.2 mV)对阳离子表面活性剂具有很强的静电吸引力,达到2936 L/(m2 h)的高通量和99.6%的分离效率,超过了最近报道的相同条件下的MXene和PANI复合材料。综上所述,蜂窝纳米结构与GDY电负性之间的协同作用克服了通量效率的权衡,为油水分离膜的制备提供了新的思路。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信