On Shape Optimization for Fourth Order Steklov eigenvalue Problems

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Changwei Xiong, Jinglong Yang, Jinchao Yu
{"title":"On Shape Optimization for Fourth Order Steklov eigenvalue Problems","authors":"Changwei Xiong,&nbsp;Jinglong Yang,&nbsp;Jinchao Yu","doi":"10.1007/s00245-025-10277-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study three types of fourth-order Steklov eigenvalue problems. For the first two of them, we derive the asymptotic expansion of the eigenvalues on Euclidean annular domains <span>\\(\\mathbb {B}^n_1\\setminus \\overline{\\mathbb {B}^n_\\epsilon }\\)</span> as <span>\\(\\epsilon \\rightarrow 0\\)</span>, in turn yielding some interesting results regarding the shape optimization of the eigenvalues. For these two problems, we also compute the respective spectra on cylinders over closed Riemannian manifolds. For the third problem, we obtain a sharp upper bound for its first non-zero eigenvalue on star-shaped and mean convex Euclidean domains.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10277-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study three types of fourth-order Steklov eigenvalue problems. For the first two of them, we derive the asymptotic expansion of the eigenvalues on Euclidean annular domains \(\mathbb {B}^n_1\setminus \overline{\mathbb {B}^n_\epsilon }\) as \(\epsilon \rightarrow 0\), in turn yielding some interesting results regarding the shape optimization of the eigenvalues. For these two problems, we also compute the respective spectra on cylinders over closed Riemannian manifolds. For the third problem, we obtain a sharp upper bound for its first non-zero eigenvalue on star-shaped and mean convex Euclidean domains.

四阶Steklov特征值问题的形状优化
研究了三种类型的四阶Steklov特征值问题。对于前两个问题,我们推导出了特征值在欧几里得环域\(\mathbb {B}^n_1\setminus \overline{\mathbb {B}^n_\epsilon }\)上的渐近展开式\(\epsilon \rightarrow 0\),从而得到了一些关于特征值形状优化的有趣结果。对于这两个问题,我们还分别计算了闭黎曼流形上柱面上的谱。对于第三个问题,我们在星形和平均凸欧几里得区域上得到了它的第一个非零特征值的明显上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信