{"title":"Numerical optimization of SPIF for steel matrix composites using an elastoplastic damage model and desirability-based RSM","authors":"Abir Bouhamed, Hajer Ellouz, Hanen Jrad","doi":"10.1007/s12289-025-01920-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Single Point Incremental Forming (SPIF) technique has received considerable recognition for its improved formability, versatile process capabilities, and diminished forming forces. Nevertheless, its widespread industrial adoption remains limited due to challenges in accurately predicting fracture during forming. This study addresses these challenges by examining the formability and damage mechanisms of a ferritic steel matrix composite reinforced with TiB₂ ceramic particles. By leveraging advanced materials and computational methods, our research focuses on optimizing the SPIF process for these composites, renowned for their exceptional mechanical properties. We analyze three critical process parameters—blank thickness, forming tool diameter, and wall angle of the cone—to evaluate their influences on deformation mechanics and process performance. Numerical simulations generate response surfaces to optimize forming parameters, focusing on punch force, equivalent plastic strain, Von Mises stress, and final forming depth. Employing a desirability function approach, we tackle this multi-objective optimization, providing a robust framework for parameter selection. This study demonstrates the potential of TiB₂-reinforced steel matrix composites in advanced forming applications and highlights the optimal SPIF conditions for achieving superior formability while minimizing damage. The findings offer valuable insights for industries working with innovative composite materials and advancing manufacturing efficiency.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01920-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The Single Point Incremental Forming (SPIF) technique has received considerable recognition for its improved formability, versatile process capabilities, and diminished forming forces. Nevertheless, its widespread industrial adoption remains limited due to challenges in accurately predicting fracture during forming. This study addresses these challenges by examining the formability and damage mechanisms of a ferritic steel matrix composite reinforced with TiB₂ ceramic particles. By leveraging advanced materials and computational methods, our research focuses on optimizing the SPIF process for these composites, renowned for their exceptional mechanical properties. We analyze three critical process parameters—blank thickness, forming tool diameter, and wall angle of the cone—to evaluate their influences on deformation mechanics and process performance. Numerical simulations generate response surfaces to optimize forming parameters, focusing on punch force, equivalent plastic strain, Von Mises stress, and final forming depth. Employing a desirability function approach, we tackle this multi-objective optimization, providing a robust framework for parameter selection. This study demonstrates the potential of TiB₂-reinforced steel matrix composites in advanced forming applications and highlights the optimal SPIF conditions for achieving superior formability while minimizing damage. The findings offer valuable insights for industries working with innovative composite materials and advancing manufacturing efficiency.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.