On the Behavior of Induced Seismicity

IF 1 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
M. V. Rodkin
{"title":"On the Behavior of Induced Seismicity","authors":"M. V. Rodkin","doi":"10.1134/S1069351325700235","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The problem of induced seismicity has both practical and theoretical aspects. The practical aspect is related to the danger of induced seismicity. In a number of cases, the potential hazard from strong induced seismicity has prompted the cancellation of significant industrial projects. The theoretical aspect is related to the well-known paradox of seismicity that the earthquakes that rupture by the mechanism of ordinary brittle failure cannot occur at depths greater than a few tens of kilometers. This suggests that the physics of induced, typically shallow earthquakes can differ from the physics of most of the deeper events. Examples of a number of areas of induced seismicity both in the vicinity of large reservoirs and in the regions of extensive hydrocarbon and ore extraction are considered. A set of common trends is identified in all considered regions, with varying degrees of certainty. After the buildup of induced seismicity, even under a continuing strong anthropogenic impact, a declining trend is observed in seismicity rate. Furthermore, the analysis using the generalized vicinity of large earthquakes (GVLE) method revealed the closeness of the intensities of the fore- and aftershock process in the zones of induced seismicity. This contrasts with the patterns of ordinary seismicity, where aftershock activity process is typically much higher. It is hypothesized that the decay of induced seismicity is related to the unloading of the initial tectonic stresses, while the closeness of the intensities of the foreshock and aftershock processes suggests that the physical mechanism of induced shallow earthquakes differs from that of ordinary, deeper earthquakes.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"61 2","pages":"277 - 287"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351325700235","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract—The problem of induced seismicity has both practical and theoretical aspects. The practical aspect is related to the danger of induced seismicity. In a number of cases, the potential hazard from strong induced seismicity has prompted the cancellation of significant industrial projects. The theoretical aspect is related to the well-known paradox of seismicity that the earthquakes that rupture by the mechanism of ordinary brittle failure cannot occur at depths greater than a few tens of kilometers. This suggests that the physics of induced, typically shallow earthquakes can differ from the physics of most of the deeper events. Examples of a number of areas of induced seismicity both in the vicinity of large reservoirs and in the regions of extensive hydrocarbon and ore extraction are considered. A set of common trends is identified in all considered regions, with varying degrees of certainty. After the buildup of induced seismicity, even under a continuing strong anthropogenic impact, a declining trend is observed in seismicity rate. Furthermore, the analysis using the generalized vicinity of large earthquakes (GVLE) method revealed the closeness of the intensities of the fore- and aftershock process in the zones of induced seismicity. This contrasts with the patterns of ordinary seismicity, where aftershock activity process is typically much higher. It is hypothesized that the decay of induced seismicity is related to the unloading of the initial tectonic stresses, while the closeness of the intensities of the foreshock and aftershock processes suggests that the physical mechanism of induced shallow earthquakes differs from that of ordinary, deeper earthquakes.

Abstract Image

诱发地震活动性的行为
摘要:诱发地震活动性问题既有实践方面的,也有理论方面的。实际方面与诱发地震活动的危险有关。在许多情况下,强烈诱发地震活动的潜在危险已促使重大工业项目取消。理论方面与众所周知的地震活动性悖论有关,即由普通脆性破坏机制破裂的地震不可能发生在深度超过几十公里的地方。这表明,诱发的、典型的浅层地震的物理原理可能与大多数深层地震的物理原理不同。考虑了在大型储层附近和在广泛开采碳氢化合物和矿石的地区的一些诱发地震活动地区的例子。在所有考虑的区域确定了一组共同趋势,确定性程度各不相同。在诱发地震活动积累之后,即使在持续强烈的人为影响下,地震活动率也有下降的趋势。此外,利用广义邻近大地震(GVLE)方法进行分析,揭示了诱发地震活动性区内前、余震过程强度的密切性。这与普通地震活动的模式形成对比,后者的余震活动过程通常要高得多。假设诱发地震活动性的衰减与初始构造应力的卸载有关,而前震和余震过程强度的密切性表明诱发浅层地震的物理机制不同于普通的深层地震。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya, Physics of the Solid Earth
Izvestiya, Physics of the Solid Earth 地学-地球化学与地球物理
CiteScore
1.60
自引率
30.00%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信