Magma generation processes for large, zoned ignimbrites of Aso volcano, SW Japan: insights from geochemical variation of melt inclusions and groundmass

IF 3.7 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Ryohei Kikuchi, Katsuya Kaneko, Olivier Bachmann
{"title":"Magma generation processes for large, zoned ignimbrites of Aso volcano, SW Japan: insights from geochemical variation of melt inclusions and groundmass","authors":"Ryohei Kikuchi,&nbsp;Katsuya Kaneko,&nbsp;Olivier Bachmann","doi":"10.1007/s00410-025-02232-6","DOIUrl":null,"url":null,"abstract":"<div><p>Aso volcano in southwest Japan has produced four repeated caldera-forming eruptions over the last 270,000 years, each generating compositionally zoned ignimbrites that transition from silicic to more mafic magmas. To understand the magmatic processes behind these chemical and thermal zonations, we analyzed major and trace element compositions of melt inclusions and groundmass glasses. Our results reveal three distinct melt types: high-K silicic (HK-S), high-K mafic (HK-M), and medium-K (MK) melts. The HK-S and HK-M melts dominate the silicic and mafic units, respectively, while the MK melt is a minor component in the mafic units. Combining experimental petrology and mass balance modeling (mostly focusing on rare earth element compositions), we propose the following magmatic evolution: (1) The HK-M magma formed in a mid-lower crustal MASH zone through crystallization of basaltic magma and/or partial melting of basaltic rock; (2) this magma ascended and differentiated in a shallow upper crustal reservoir, generating the HK-S melt; (3) subsequent melt extraction from crystal mush, coupled with HK-M magma recharge, created a compositionally zoned shallow reservoir. The heat from the recharge also triggered partial melting and remobilization of the cumulate mush, producing the MK melt. These processes collectively explain the systematic zonation observed in Aso’s ignimbrites.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 8","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-025-02232-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aso volcano in southwest Japan has produced four repeated caldera-forming eruptions over the last 270,000 years, each generating compositionally zoned ignimbrites that transition from silicic to more mafic magmas. To understand the magmatic processes behind these chemical and thermal zonations, we analyzed major and trace element compositions of melt inclusions and groundmass glasses. Our results reveal three distinct melt types: high-K silicic (HK-S), high-K mafic (HK-M), and medium-K (MK) melts. The HK-S and HK-M melts dominate the silicic and mafic units, respectively, while the MK melt is a minor component in the mafic units. Combining experimental petrology and mass balance modeling (mostly focusing on rare earth element compositions), we propose the following magmatic evolution: (1) The HK-M magma formed in a mid-lower crustal MASH zone through crystallization of basaltic magma and/or partial melting of basaltic rock; (2) this magma ascended and differentiated in a shallow upper crustal reservoir, generating the HK-S melt; (3) subsequent melt extraction from crystal mush, coupled with HK-M magma recharge, created a compositionally zoned shallow reservoir. The heat from the recharge also triggered partial melting and remobilization of the cumulate mush, producing the MK melt. These processes collectively explain the systematic zonation observed in Aso’s ignimbrites.

日本西南阿索火山大型分带火烟煤岩浆生成过程:熔体包裹体和地质体地球化学变化的启示
在过去的27万年里,日本西南部的麻生火山已经发生了四次反复的火山口形成喷发,每次喷发都产生了由硅质岩浆向镁质岩浆过渡的组成分区的火成岩。为了了解这些化学和热分带背后的岩浆过程,我们分析了熔融包裹体和底团玻璃的主要和微量元素组成。我们的研究结果揭示了三种不同的熔体类型:高k硅(HK-S)、高k基性(HK-M)和中k (MK)熔体。HK-S熔体和HK-M熔体分别在硅基和基性单元中占主导地位,MK熔体在基性单元中占次要地位。结合实验岩石学和质量平衡模拟(主要集中在稀土元素组成),我们提出了以下岩浆演化:(1)HK-M岩浆通过玄武岩岩浆结晶和/或玄武岩部分熔融形成于中下地壳MASH带;(2)该岩浆在上地壳浅层储层中上升分化,形成HK-S熔体;(3)结晶浆液的熔体萃取,加上HK-M岩浆的补给,形成了一个成分分带的浅层储层。来自补给的热量也触发了部分熔化和堆积的糊状物的再活化,产生MK熔化。这些过程共同解释了在Aso的火成岩中观察到的系统分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信