Concentration Phenomena of Sign-Changing Solutions for the Planar Schrödinger-Poisson Systems

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Yiqing Li, Patrizia Pucci, Binlin Zhang
{"title":"Concentration Phenomena of Sign-Changing Solutions for the Planar Schrödinger-Poisson Systems","authors":"Yiqing Li,&nbsp;Patrizia Pucci,&nbsp;Binlin Zhang","doi":"10.1007/s00245-025-10289-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the existence and concentration behavior of nodal solutions for the planar Schrödinger-Poisson system with subcritical exponential growth </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} -\\Delta u+V(\\varepsilon x)u+\\mu \\phi u= f(u)\\ \\ \\text{ in }\\ {\\mathbb {R}}^2,\\\\ \\Delta \\phi =u^2\\ \\ \\text{ in }\\ {\\mathbb {R}}^2, \\end{array}\\right. \\qquad \\qquad \\qquad ({\\mathcal {S}}) \\end{aligned}$$</span></div></div><p>where <span>\\(\\varepsilon, \\mu &gt;0\\)</span> are parameters, <i>V</i> and <i>f</i> are continuous functions. Under suitable assumptions, the existence of nodal solutions is established, using variational methods. Furthermore, we prove that the nodal solutions of (<span>\\({\\mathcal {S}}\\)</span>) concentrate around the minimum point of <i>V</i> and exhibit exponential decay at infinity.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10289-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the existence and concentration behavior of nodal solutions for the planar Schrödinger-Poisson system with subcritical exponential growth

$$\begin{aligned} \left\{ \begin{array}{l} -\Delta u+V(\varepsilon x)u+\mu \phi u= f(u)\ \ \text{ in }\ {\mathbb {R}}^2,\\ \Delta \phi =u^2\ \ \text{ in }\ {\mathbb {R}}^2, \end{array}\right. \qquad \qquad \qquad ({\mathcal {S}}) \end{aligned}$$

where \(\varepsilon, \mu >0\) are parameters, V and f are continuous functions. Under suitable assumptions, the existence of nodal solutions is established, using variational methods. Furthermore, we prove that the nodal solutions of (\({\mathcal {S}}\)) concentrate around the minimum point of V and exhibit exponential decay at infinity.

平面Schrödinger-Poisson系统变符号解的集中现象
本文研究了具有次临界指数增长$$\begin{aligned} \left\{ \begin{array}{l} -\Delta u+V(\varepsilon x)u+\mu \phi u= f(u)\ \ \text{ in }\ {\mathbb {R}}^2,\\ \Delta \phi =u^2\ \ \text{ in }\ {\mathbb {R}}^2, \end{array}\right. \qquad \qquad \qquad ({\mathcal {S}}) \end{aligned}$$的平面Schrödinger-Poisson系统节点解的存在性和集中性,其中\(\varepsilon, \mu >0\)为参数,V和f为连续函数。在适当的假设条件下,利用变分方法建立了节点解的存在性。进一步证明了(\({\mathcal {S}}\))的节点解集中在V的最小点周围,并在无穷远处呈现指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信