An All-Nanofiber-Based Customizable Biomimetic Electronic Skin for Thermal-Moisture Management and Energy Conversion

IF 21.3 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yi Hao, Yuxin Zhang, Jie Li, Alan J.X. Guo, Pengfei Lv, Qufu Wei
{"title":"An All-Nanofiber-Based Customizable Biomimetic Electronic Skin for Thermal-Moisture Management and Energy Conversion","authors":"Yi Hao,&nbsp;Yuxin Zhang,&nbsp;Jie Li,&nbsp;Alan J.X. Guo,&nbsp;Pengfei Lv,&nbsp;Qufu Wei","doi":"10.1007/s42765-025-00541-w","DOIUrl":null,"url":null,"abstract":"<div><p>Developing electronic skin (e-skin) with extraordinary sensing capabilities through biomimetic strategies holds significant potential for distributed wearable electronics in the Internet of Things and human–machine interaction. However, moisture accumulation at the surface between e-skin and human skin severly affects the stability and accuracy of sensing signals. Thermal-moisture comfort and stable functional interfaces of e-skins are still great challenges that need to be addressed. Herein, inspired by the dual-sided structure of lotus leaf, we demonstrate an unidirectional water transport e-skin (UWTES) by constructing a gradient structure of porosity and hydrophilicity using one-step electrospinning thermoplastic polyurethane/poly (vinylidene fluoride-co-hexafluoropropylene) (TPU/PVDF-HFP) with an alloyed liquid metal-based (LM-Ag) electrode. A UWTES textile-based triboelectric nanogenerator (UT-TENG) exhibits a maximum open-circuit voltage, short-circuit current and power density of 188.7 V, 18.89 μA and 4.73 mW/m<sup>2</sup>, respectively. Additionally, a temperature visualization system for UWTES textile (TUWTES) enables real-time monitoring and displays of body temperature during intense physical activity. Through a one-dimensional convolutional neural network (1D-CNN), the gait motion recognition system achieves a highly accuracy of 99.7%. This design strategy provides new insights into the development of integrated smart textiles with improved thermal-moisture comfort and user-friendliness.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 4","pages":"1111 - 1127"},"PeriodicalIF":21.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00541-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing electronic skin (e-skin) with extraordinary sensing capabilities through biomimetic strategies holds significant potential for distributed wearable electronics in the Internet of Things and human–machine interaction. However, moisture accumulation at the surface between e-skin and human skin severly affects the stability and accuracy of sensing signals. Thermal-moisture comfort and stable functional interfaces of e-skins are still great challenges that need to be addressed. Herein, inspired by the dual-sided structure of lotus leaf, we demonstrate an unidirectional water transport e-skin (UWTES) by constructing a gradient structure of porosity and hydrophilicity using one-step electrospinning thermoplastic polyurethane/poly (vinylidene fluoride-co-hexafluoropropylene) (TPU/PVDF-HFP) with an alloyed liquid metal-based (LM-Ag) electrode. A UWTES textile-based triboelectric nanogenerator (UT-TENG) exhibits a maximum open-circuit voltage, short-circuit current and power density of 188.7 V, 18.89 μA and 4.73 mW/m2, respectively. Additionally, a temperature visualization system for UWTES textile (TUWTES) enables real-time monitoring and displays of body temperature during intense physical activity. Through a one-dimensional convolutional neural network (1D-CNN), the gait motion recognition system achieves a highly accuracy of 99.7%. This design strategy provides new insights into the development of integrated smart textiles with improved thermal-moisture comfort and user-friendliness.

Graphical Abstract

用于热湿管理和能量转换的全纳米纤维可定制仿生电子皮肤
通过仿生策略开发具有非凡传感能力的电子皮肤(e-skin)对于物联网和人机交互中的分布式可穿戴电子产品具有巨大的潜力。然而,电子皮肤与人体皮肤之间表面的水分积累严重影响了传感信号的稳定性和准确性。热湿舒适性和稳定的功能界面仍然是电子皮肤需要解决的巨大挑战。在此,受荷叶双面结构的启发,我们利用一步静电纺丝热塑性聚氨酯/聚偏氟乙烯-共六氟丙烯(TPU/PVDF-HFP)和合金液态金属基(LM-Ag)电极构建了多孔性和亲水性的梯度结构,展示了一种单向水传输电子皮肤(UWTES)。UWTES摩擦纳米发电机(UT-TENG)的最大开路电压为188.7 V,最大短路电流为18.89 μA,最大功率密度为4.73 mW/m2。此外,UWTES纺织品的温度可视化系统(TUWTES)可以在激烈的身体活动中实时监测和显示体温。通过一维卷积神经网络(1D-CNN),步态运动识别系统的准确率达到99.7%。这种设计策略为开发具有更好的热湿舒适性和用户友好性的集成智能纺织品提供了新的见解。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信