{"title":"New versions of Hermite–Hadamard inequalities on Discrete Time Scales","authors":"Hüseyin Budak","doi":"10.1007/s13324-025-01106-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first introduced two time scales based on the interval [<i>a</i>, <i>b</i>] and <span>\\( \\mathbb {Z} \\)</span>. Then, by using one of these time scale and substitutions rules, we prove a new version of discrete Hermite-Hadamard inequality for discrete convex functions. Moreover, we investigate the fractional version of this inequality involving fractional delta and nabla sums.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01106-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we first introduced two time scales based on the interval [a, b] and \( \mathbb {Z} \). Then, by using one of these time scale and substitutions rules, we prove a new version of discrete Hermite-Hadamard inequality for discrete convex functions. Moreover, we investigate the fractional version of this inequality involving fractional delta and nabla sums.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.