{"title":"Extended High-Current Arc Discharges in an External Magnetic Field in Gas Media","authors":"A. P. Glinov, A. P. Golovin, P. V. Kozlov","doi":"10.1134/S0015462825600932","DOIUrl":null,"url":null,"abstract":"<p>Extended (up to several tens of centimeters) high-current (hundreds of amperes) electric arcs in various gases at the atmospheric pressure are studied experimentally and theoretically. Such discharges have been studied on the electric discharge stand of the P-2000 facility of the Institute of Mechanics of Moscow State University. The data on the influence of an external magnetic field on the stability of such discharges and the formation of branched current channels are clarified. One of the areas of the research is the study of the effect of the orientation of the magnetic field imposed on the arc on the processes of development of the discharge in various gas media, such as air, CO<sub>2</sub>, Ar, and N<sub>2</sub>. The data for argon and nitrogen are presented most fully. The experiments were carried out in a chamber with transparent walls. The calculation and the theoretical study are carried out on the basis of an electrical engineering model using the empirical data on the volt-ampere characteristics of arcs between graphite electrodes. It is found that the stability of high-current arcs is significantly affected by electrode jet-flame dynamics. At the same time, the traditional models of arcs in the external magnetic field without taking these factors into account show that the direction of the external axial field does not affect the stability of the arcs, affecting only the direction of their twisting during the development of helical instability.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"60 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462825600932","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Extended (up to several tens of centimeters) high-current (hundreds of amperes) electric arcs in various gases at the atmospheric pressure are studied experimentally and theoretically. Such discharges have been studied on the electric discharge stand of the P-2000 facility of the Institute of Mechanics of Moscow State University. The data on the influence of an external magnetic field on the stability of such discharges and the formation of branched current channels are clarified. One of the areas of the research is the study of the effect of the orientation of the magnetic field imposed on the arc on the processes of development of the discharge in various gas media, such as air, CO2, Ar, and N2. The data for argon and nitrogen are presented most fully. The experiments were carried out in a chamber with transparent walls. The calculation and the theoretical study are carried out on the basis of an electrical engineering model using the empirical data on the volt-ampere characteristics of arcs between graphite electrodes. It is found that the stability of high-current arcs is significantly affected by electrode jet-flame dynamics. At the same time, the traditional models of arcs in the external magnetic field without taking these factors into account show that the direction of the external axial field does not affect the stability of the arcs, affecting only the direction of their twisting during the development of helical instability.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.