Littlewood–Paley functions associated with general Ornstein–Uhlenbeck semigroups

IF 1 3区 数学 Q1 MATHEMATICS
Víctor Almeida, Jorge J. Betancor, Juan C. Fariña, Pablo Quijano, Lourdes Rodríguez-Mesa
{"title":"Littlewood–Paley functions associated with general Ornstein–Uhlenbeck semigroups","authors":"Víctor Almeida,&nbsp;Jorge J. Betancor,&nbsp;Juan C. Fariña,&nbsp;Pablo Quijano,&nbsp;Lourdes Rodríguez-Mesa","doi":"10.1007/s43034-025-00457-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, <span>\\(L^p(\\mathbb {R}^d,\\gamma _\\infty )\\)</span>-boundedness properties for Littlewood–Paley g-functions involving time and spatial derivatives of Ornstein–Uhlenbeck semigroups are established. Here, <span>\\(\\gamma _\\infty\\)</span> denotes the invariant measure. To prove the strong type results for <span>\\(1&lt;p&lt; {\\infty}\\)</span>, we use <i>R</i>-boundedness. The weak type (1,1) property is established by studying separately global and local operators defined for the Littlewood–Paley g-functions. By the way <span>\\(L^p(\\mathbb {R}^d,\\gamma _\\infty )\\)</span>-boundedness properties for maximal and variation operators for Ornstein–Uhlenbeck semigroups are proved.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-025-00457-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00457-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, \(L^p(\mathbb {R}^d,\gamma _\infty )\)-boundedness properties for Littlewood–Paley g-functions involving time and spatial derivatives of Ornstein–Uhlenbeck semigroups are established. Here, \(\gamma _\infty\) denotes the invariant measure. To prove the strong type results for \(1<p< {\infty}\), we use R-boundedness. The weak type (1,1) property is established by studying separately global and local operators defined for the Littlewood–Paley g-functions. By the way \(L^p(\mathbb {R}^d,\gamma _\infty )\)-boundedness properties for maximal and variation operators for Ornstein–Uhlenbeck semigroups are proved.

一般Ornstein-Uhlenbeck半群相关的Littlewood-Paley函数
本文建立了涉及Ornstein-Uhlenbeck半群的时间和空间导数的Littlewood-Paley g函数的\(L^p(\mathbb {R}^d,\gamma _\infty )\)有界性。其中,\(\gamma _\infty\)表示不变测度。为了证明\(1<p< {\infty}\)的强类型结果,我们使用了r有界性。通过分别研究Littlewood-Paley g函数的全局算子和局部算子,建立了弱型(1,1)性质。通过证明Ornstein-Uhlenbeck半群的极大算子和变分算子的\(L^p(\mathbb {R}^d,\gamma _\infty )\)有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信