Optimization of Oil and Gas Pipeline Leakage Data and Defect Identification Based on Graph Neural Processing

Q1 Decision Sciences
Lizhen Zhang
{"title":"Optimization of Oil and Gas Pipeline Leakage Data and Defect Identification Based on Graph Neural Processing","authors":"Lizhen Zhang","doi":"10.1007/s40745-025-00619-7","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing complexity of oil and gas pipeline networks, early identification of leaks and defects is crucial to ensure the safe operation of pipelines. This study proposes a graph neural network (GNN) method for data processing and defect identification aimed at optimizing monitoring and maintenance strategies for oil and gas pipelines. Through the analysis of historical leakage data, we constructed a graph database containing 5000 samples, each containing 10 features such as pressure, flow, temperature, etc. Using graph convolutional network and graph attention network (GAT) to perform feature extraction and pattern recognition on nodes in pipeline network, our model achieves 92% accuracy in defect recognition, which is 15% higher than traditional methods. In addition, we have developed a leakage prediction model based on time series analysis, which is able to predict potential leakage risks 24 h in advance with an accuracy of 85%. The results of this study not only improve the safety management level of oil and gas pipelines, but also provide a new technical path for future intelligent pipeline maintenance.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 4","pages":"1413 - 1430"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40745-025-00619-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-025-00619-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing complexity of oil and gas pipeline networks, early identification of leaks and defects is crucial to ensure the safe operation of pipelines. This study proposes a graph neural network (GNN) method for data processing and defect identification aimed at optimizing monitoring and maintenance strategies for oil and gas pipelines. Through the analysis of historical leakage data, we constructed a graph database containing 5000 samples, each containing 10 features such as pressure, flow, temperature, etc. Using graph convolutional network and graph attention network (GAT) to perform feature extraction and pattern recognition on nodes in pipeline network, our model achieves 92% accuracy in defect recognition, which is 15% higher than traditional methods. In addition, we have developed a leakage prediction model based on time series analysis, which is able to predict potential leakage risks 24 h in advance with an accuracy of 85%. The results of this study not only improve the safety management level of oil and gas pipelines, but also provide a new technical path for future intelligent pipeline maintenance.

基于图神经处理的油气管道泄漏数据优化及缺陷识别
随着油气管网的日益复杂,及早发现泄漏和缺陷对于保证管道的安全运行至关重要。本文提出了一种基于图神经网络(GNN)的数据处理和缺陷识别方法,旨在优化油气管道的监测和维护策略。通过对历史泄漏数据的分析,我们构建了一个包含5000个样本的图形数据库,每个样本包含压力、流量、温度等10个特征。利用图卷积网络和图关注网络(GAT)对管网节点进行特征提取和模式识别,该模型的缺陷识别准确率达到92%,比传统方法提高了15%。此外,我们开发了基于时间序列分析的泄漏预测模型,可以提前24 h预测潜在的泄漏风险,准确率为85%。研究结果不仅提高了油气管道的安全管理水平,而且为未来智能管道维护提供了新的技术路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信