Hong Wu, Chun Li, Pengxin Zhao, Lingfeng Zhu, Yitong Li, Erfan Rezvani Ghomi, Hanlin Cao, Mingyang Zhang, Xiaoxuan Weng, Qingling Zhang, Xiaoxiao Wei, Zhenfang Zhang, Seeram Ramakrishna, Chengkun Liu
{"title":"DNA-Like Double-Helix Wrinkled Flexible Fibrous Sensor with Excellent Mechanical Sensibility for Human Motion Monitoring","authors":"Hong Wu, Chun Li, Pengxin Zhao, Lingfeng Zhu, Yitong Li, Erfan Rezvani Ghomi, Hanlin Cao, Mingyang Zhang, Xiaoxuan Weng, Qingling Zhang, Xiaoxiao Wei, Zhenfang Zhang, Seeram Ramakrishna, Chengkun Liu","doi":"10.1007/s42765-025-00560-7","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible mechanical sensors offer extensive application prospects in the field of smart wearables. However, developing highly sensitive, flexible mechanical sensors that can simultaneously detect strain and pressure remains a significant challenge. Herein, we present a flexible mechanical sensor based on AgNPs/MWCNTsCOOH/PDA/PU/PVB nanofiber-covered yarn (AMPPPNY) featuring a DNA-like double-helix wrinkled structure. The sensor is fabricated by electrospraying polyvinyl butyral (PVB) onto a pre-stretched double-helix elastic yarn, followed by electrospinning a polyurethane (PU) nanofiber membrane and inducing the self-polymerization of dopamine (DA) to create an adhesive layer. Then, one-dimensional carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and zero-dimensional silver nanoparticles (AgNPs) are dispersed onto the structure, synergistically forming a stable conductive network for efficient signal transmission. The integration of conductive fillers with different dimensionalities and DNA-like double-helix wrinkled structure endows the sensor with high strain sensitivity (gauge factor of 11,977) in the strain range of 0–310% and high pressure sensitivity (0.475 kPa<sup>−1</sup>) in the pressure range of 0–2 kPa. Moreover, the fabricated sensor exhibits rapid response and recovery times (130 ms/135 ms) and outstanding cyclic stability (over 10,000 cycles of both strain and pressure). Next, the fibrous sensor is weaved into a large-area fabric, and the developed smart textiles demonstrate impressive performance in detecting both subtle and large human movements. The proposed sensor is a promising candidate for flexible wearable applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 4","pages":"1260 - 1273"},"PeriodicalIF":21.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00560-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible mechanical sensors offer extensive application prospects in the field of smart wearables. However, developing highly sensitive, flexible mechanical sensors that can simultaneously detect strain and pressure remains a significant challenge. Herein, we present a flexible mechanical sensor based on AgNPs/MWCNTsCOOH/PDA/PU/PVB nanofiber-covered yarn (AMPPPNY) featuring a DNA-like double-helix wrinkled structure. The sensor is fabricated by electrospraying polyvinyl butyral (PVB) onto a pre-stretched double-helix elastic yarn, followed by electrospinning a polyurethane (PU) nanofiber membrane and inducing the self-polymerization of dopamine (DA) to create an adhesive layer. Then, one-dimensional carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and zero-dimensional silver nanoparticles (AgNPs) are dispersed onto the structure, synergistically forming a stable conductive network for efficient signal transmission. The integration of conductive fillers with different dimensionalities and DNA-like double-helix wrinkled structure endows the sensor with high strain sensitivity (gauge factor of 11,977) in the strain range of 0–310% and high pressure sensitivity (0.475 kPa−1) in the pressure range of 0–2 kPa. Moreover, the fabricated sensor exhibits rapid response and recovery times (130 ms/135 ms) and outstanding cyclic stability (over 10,000 cycles of both strain and pressure). Next, the fibrous sensor is weaved into a large-area fabric, and the developed smart textiles demonstrate impressive performance in detecting both subtle and large human movements. The proposed sensor is a promising candidate for flexible wearable applications.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.