Visualizing NIR Vein Patterns Using Supervised and Unsupervised Methods

IF 1.3 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Swati Rastogi, SP Duttagupta, Anirban Guha
{"title":"Visualizing NIR Vein Patterns Using Supervised and Unsupervised Methods","authors":"Swati Rastogi,&nbsp;SP Duttagupta,&nbsp;Anirban Guha","doi":"10.1007/s40009-024-01474-5","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a self-supervised approach implementing an unsupervised clustering algorithm to analyze the intrinsic vascular pattern in near-infrared (NIR) light. The framework includes NIR intrinsic vascular image acquisition, pattern detection, ML multiscale filtering, feature extraction, recognition, identification, and matching based on a linear regression model to detect an optional variable worth dependent on a free factor. The approach uses ordinal NIR vein print portrayal, and the self-learning methodology achieved a 97.50% accuracy score for identifying intrinsic vascular patterns in unsupervised learning issues.</p></div>","PeriodicalId":717,"journal":{"name":"National Academy Science Letters","volume":"48 3","pages":"321 - 326"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Academy Science Letters","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40009-024-01474-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a self-supervised approach implementing an unsupervised clustering algorithm to analyze the intrinsic vascular pattern in near-infrared (NIR) light. The framework includes NIR intrinsic vascular image acquisition, pattern detection, ML multiscale filtering, feature extraction, recognition, identification, and matching based on a linear regression model to detect an optional variable worth dependent on a free factor. The approach uses ordinal NIR vein print portrayal, and the self-learning methodology achieved a 97.50% accuracy score for identifying intrinsic vascular patterns in unsupervised learning issues.

Abstract Image

使用监督和非监督方法可视化近红外静脉模式
本文提出了一种自监督方法,实现了一种无监督聚类算法来分析近红外(NIR)光下的内在血管模式。该框架包括近红外固有血管图像采集、模式检测、ML多尺度滤波、特征提取、识别、识别和基于线性回归模型的匹配,以检测依赖于自由因子的可选变量值。该方法使用有序近红外静脉打印图像,在无监督学习问题中,自学习方法在识别固有血管模式方面达到了97.50%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Academy Science Letters
National Academy Science Letters 综合性期刊-综合性期刊
CiteScore
2.20
自引率
0.00%
发文量
86
审稿时长
12 months
期刊介绍: The National Academy Science Letters is published by the National Academy of Sciences, India, since 1978. The publication of this unique journal was started with a view to give quick and wide publicity to the innovations in all fields of science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信