Morse Index and Maslov-type Index of the Discrete Hamiltonian System

IF 0.9 3区 数学 Q2 MATHEMATICS
Gaosheng Zhu
{"title":"Morse Index and Maslov-type Index of the Discrete Hamiltonian System","authors":"Gaosheng Zhu","doi":"10.1007/s10114-025-2580-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give the definition of Maslov-type index of the discrete Hamiltonian system, and obtain the relation of Morse index and Maslov-type index of the discrete Hamiltonian system which is a generalization of the case <i>ω</i> = 1 to <i>ω</i> ∈ <b>U</b> degenerate case via direct method which is different from that of the known literatures. Moreover the well-posedness of the splitting numbers <span>\\(\\cal{S}_{h,\\omega}^{\\pm}\\)</span> is proven, then the index iteration theories of Bott and Long are also valid for the discrete case, and those can be also applied to the study of the symplectic algorithm.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 5","pages":"1353 - 1392"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10114-025-2580-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-2580-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give the definition of Maslov-type index of the discrete Hamiltonian system, and obtain the relation of Morse index and Maslov-type index of the discrete Hamiltonian system which is a generalization of the case ω = 1 to ωU degenerate case via direct method which is different from that of the known literatures. Moreover the well-posedness of the splitting numbers \(\cal{S}_{h,\omega}^{\pm}\) is proven, then the index iteration theories of Bott and Long are also valid for the discrete case, and those can be also applied to the study of the symplectic algorithm.

离散哈密顿系统的Morse指数和maslov型指数
本文给出了离散哈密顿系统的maslov型指标的定义,并利用不同于已知文献的直接方法,得到了离散哈密顿系统的Morse指数与maslov型指标的关系,该系统是ω = 1到ω∈U退化情况的推广。此外,还证明了分裂数\(\cal{S}_{h,\omega}^{\pm}\)的适定性,从而证明了Bott和Long的索引迭代理论在离散情况下也是有效的,并且这些理论也可以应用于辛算法的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信