On the Special Value Distribution of Two Classes of Small Multiplicative Functions

IF 0.9 3区 数学 Q2 MATHEMATICS
Haihong Fan, Wenguang Zhai
{"title":"On the Special Value Distribution of Two Classes of Small Multiplicative Functions","authors":"Haihong Fan,&nbsp;Wenguang Zhai","doi":"10.1007/s10114-025-3125-6","DOIUrl":null,"url":null,"abstract":"<div><p>For any real number <i>x</i>, [<i>x</i>] denotes the integer part of <i>x</i>. <span>\\(\\cal{F}\\)</span><sub>1</sub>, <span>\\(\\cal{F}\\)</span><sub>2</sub> denote two multiplicative function classes which are small in numerical sense. In this paper, we study the summation <span>\\(\\sum\\nolimits_{{n\\leq x}}f([x/n])\\)</span> for <i>f</i> ∈ <span>\\(\\cal{F}\\)</span><sub>1</sub>. As specific cases, we take <i>d</i><sup>(<i>e</i>)</sup>(<i>n</i>), <i>β</i>(<i>n</i>), <i>a</i>(<i>n</i>), <i>μ</i><sub>2</sub>(<i>n</i>) denoting the number of exponential divisors of <i>n</i>, the number of square-full divisors of <i>n</i>, the number of non-isomorphic Abelian groups of order <i>n</i>, and the characteristic function of the square-free integers, respectively. In the case of <i>μ</i><sub>2</sub>(<i>n</i>), we improved the result of Liu, Wu and Yang. The sums shaped like <span>\\(\\sum\\nolimits_{{n\\leq x}}f([x/n]+f([x/n]))\\)</span> for <i>f</i> ∈ <span>\\(\\cal{F}\\)</span><sub>2</sub> are also researched.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 5","pages":"1407 - 1417"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3125-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any real number x, [x] denotes the integer part of x. \(\cal{F}\)1, \(\cal{F}\)2 denote two multiplicative function classes which are small in numerical sense. In this paper, we study the summation \(\sum\nolimits_{{n\leq x}}f([x/n])\) for f\(\cal{F}\)1. As specific cases, we take d(e)(n), β(n), a(n), μ2(n) denoting the number of exponential divisors of n, the number of square-full divisors of n, the number of non-isomorphic Abelian groups of order n, and the characteristic function of the square-free integers, respectively. In the case of μ2(n), we improved the result of Liu, Wu and Yang. The sums shaped like \(\sum\nolimits_{{n\leq x}}f([x/n]+f([x/n]))\) for f\(\cal{F}\)2 are also researched.

两类小乘法函数的特殊值分布
对于任意实数x, [x]表示x的整数部分。\(\cal{F}\) 1, \(\cal{F}\) 2表示两个在数值意义上较小的乘法函数类。本文研究f∈\(\cal{F}\) 1的和\(\sum\nolimits_{{n\leq x}}f([x/n])\)。作为具体情况,我们取d(e)(n)、β(n)、a(n)、μ2(n)分别表示n的指数因子个数、n的满平方因子个数、n阶非同构阿贝尔群个数和无平方整数的特征函数。在μ2(n)的情况下,我们改进了Liu、Wu和Yang的结果。对f∈\(\cal{F}\) 2的\(\sum\nolimits_{{n\leq x}}f([x/n]+f([x/n]))\)形和也进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信