On the Existence of Solutions for Prescribing Fractional Q-curvature Problem on \({\mathbb S}^{n}\)

IF 0.9 3区 数学 Q2 MATHEMATICS
Yan Li, Zhongwei Tang
{"title":"On the Existence of Solutions for Prescribing Fractional Q-curvature Problem on \\({\\mathbb S}^{n}\\)","authors":"Yan Li,&nbsp;Zhongwei Tang","doi":"10.1007/s10114-025-3630-7","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to investigate the existence of solutions to the prescribing fractional <i>Q</i>-curvature problem on <span>\\({\\mathbb S}^{n}\\)</span> under some reasonable assumption of the Laplacian sign at the critical point of prescribing curvature function <i>K</i>. Due to the lack of compactness, we choose to return to the basic elements of variational theory and study the deformation along the flow lines. The novelty of the paper is that we obtain the existence without assuming any symmetry and periodicity on <i>K</i>. In addition, to overcome the loss of compactness for high-order operator problem, we need more delicate estimates with the second order cases.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 5","pages":"1296 - 1314"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3630-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to investigate the existence of solutions to the prescribing fractional Q-curvature problem on \({\mathbb S}^{n}\) under some reasonable assumption of the Laplacian sign at the critical point of prescribing curvature function K. Due to the lack of compactness, we choose to return to the basic elements of variational theory and study the deformation along the flow lines. The novelty of the paper is that we obtain the existence without assuming any symmetry and periodicity on K. In addition, to overcome the loss of compactness for high-order operator problem, we need more delicate estimates with the second order cases.

关于规定分数阶q曲率问题解的存在性 \({\mathbb S}^{n}\)
本文的目的是研究\({\mathbb S}^{n}\)上规定分数阶q曲率问题在规定曲率函数k的临界点处的拉普拉斯符号的合理假设下解的存在性。由于缺乏紧性,我们选择回归到变分理论的基本要素,研究沿流线的变形。本文的新颖之处在于我们在不假设k上的对称性和周期性的情况下得到了存在性。此外,为了克服高阶算子问题的紧性损失,我们需要对二阶情况进行更精细的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信