Ground State Solutions to Some Indefinite Nonlinear Schrödinger Equations on Lattice Graphs

IF 0.9 3区 数学 Q2 MATHEMATICS
Wendi Xu
{"title":"Ground State Solutions to Some Indefinite Nonlinear Schrödinger Equations on Lattice Graphs","authors":"Wendi Xu","doi":"10.1007/s10114-025-3111-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the Schrödinger type equation −Δ<i>u</i> + <i>V</i> (<i>x</i>)<i>u</i> = <i>f</i>(<i>x, u</i>) on the lattice graph ℤ<sup><i>N</i></sup> with indefinite variational functional, where Δ is the discrete Laplacian. Specifically, we assume that <i>V</i> (<i>x</i>) and <i>f</i>(<i>x, u</i>) are periodic in <i>x, f</i> satisfies some growth condition and 0 lies in a finite spectral gap of (−Δ + <i>V</i>). We obtain ground state solutions by using the method of generalized Nehari manifold which has been introduced by Pankov.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 5","pages":"1279 - 1295"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3111-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the Schrödinger type equation −Δu + V (x)u = f(x, u) on the lattice graph ℤN with indefinite variational functional, where Δ is the discrete Laplacian. Specifically, we assume that V (x) and f(x, u) are periodic in x, f satisfies some growth condition and 0 lies in a finite spectral gap of (−Δ + V). We obtain ground state solutions by using the method of generalized Nehari manifold which has been introduced by Pankov.

点阵图上一些不定非线性Schrödinger方程的基态解
本文考虑了格图N上具有不定变分泛函的Schrödinger型方程−Δu + V (x)u = f(x, u),其中Δ为离散拉普拉斯式。具体地说,我们假设V (x)和f(x, u)在x中是周期性的,f满足某种生长条件,0位于(−Δ + V)的有限谱隙中。利用Pankov引入的广义Nehari流形的方法获得了基态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信