Development of Radiotomography Algorithms for the Study of Electron Clouds in the Ionosphere and Structures in the Dusty Plasma using Low-Orbital Satellite Systems
{"title":"Development of Radiotomography Algorithms for the Study of Electron Clouds in the Ionosphere and Structures in the Dusty Plasma using Low-Orbital Satellite Systems","authors":"A. M. Krot, I. E. Savinykh","doi":"10.1134/S0038094624602196","DOIUrl":null,"url":null,"abstract":"<p>The processes of dispersion and absorption accompanying the propagation of an electromagnetic wave lead to the fact that the radio signal slows down and weakens when passing through electron plasma in the ionosphere as well as through dusty plasma. The article solves the problem of restoring both the electron concentration in the ionosphere and dusty plasma particle concentration based on radio signals from satellite systems. The derivation of analytical relations for determining the total electron content (TEC) in the ionosphere (as well as the total particle content (TPC) in the dusty plasma) is considered based on the retranslation of radio signals of the global navigation satellite system (GNSS) on two frequencies using a small-sized CubeSat retransmission satellite. Methods for calculating TEC both from direct satellite signals and based on cross-retransmission using a small-sized retransmission satellite are considered. In spite of the investigations of electron plasma in ionosphere and dusty plasma are based on different principles, this paper shows that mathematical basis of the radio tomography and the restoration algorithms for its implementation occur the same for these cases under consideration. Analytical relations are given and calculation algorithms are described. As a result, two computational radiotomography algorithms and respective software have been built using various tomography restoration methods, namely, the slice theorem and the method of back projection.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":"59 6","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0038094624602196","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The processes of dispersion and absorption accompanying the propagation of an electromagnetic wave lead to the fact that the radio signal slows down and weakens when passing through electron plasma in the ionosphere as well as through dusty plasma. The article solves the problem of restoring both the electron concentration in the ionosphere and dusty plasma particle concentration based on radio signals from satellite systems. The derivation of analytical relations for determining the total electron content (TEC) in the ionosphere (as well as the total particle content (TPC) in the dusty plasma) is considered based on the retranslation of radio signals of the global navigation satellite system (GNSS) on two frequencies using a small-sized CubeSat retransmission satellite. Methods for calculating TEC both from direct satellite signals and based on cross-retransmission using a small-sized retransmission satellite are considered. In spite of the investigations of electron plasma in ionosphere and dusty plasma are based on different principles, this paper shows that mathematical basis of the radio tomography and the restoration algorithms for its implementation occur the same for these cases under consideration. Analytical relations are given and calculation algorithms are described. As a result, two computational radiotomography algorithms and respective software have been built using various tomography restoration methods, namely, the slice theorem and the method of back projection.
期刊介绍:
Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.