{"title":"Boundary symmetries of (2+1)D topological orders","authors":"Kylan Schatz","doi":"10.1007/s11005-025-01953-w","DOIUrl":null,"url":null,"abstract":"<div><p>For a <i>G</i>-crossed braided extension of a unitary modular tensor category <span>\\(\\mathcal {C}\\)</span>—as in one representing a (2+1)D symmetry enriched topological order (SETO)—preservation of global on-site group symmetry after condensation by a commutative Q-system object <span>\\(A \\in \\mathcal {C}\\)</span> necessitates the existence of a <i>G</i>-equivariant structure on <i>A</i>. When interpreted spatially, the condensation boundary has its own internal topological symmetries. We elaborate an algebraic framework for describing the internal topological symmetries of compatible (1+1)D gapped boundaries for (2+1)D topologically ordered systems in terms of <i>hypergroup actions</i>. Then, we investigate the coherence of global on-site bulk symmetries and boundary symmetries. We present a categorical obstruction to the preservation of symmetry in a way which is coherent in terms of lifts of categorical actions to a certain 2-group of bulk symmetries. We give a characterization of this obstruction in the case of condensation by a Lagrangian algebra and boundary symmetries given by subalgebras of the <i>convolution algebra</i> associated with a Lagrangian algebra object.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01953-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01953-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For a G-crossed braided extension of a unitary modular tensor category \(\mathcal {C}\)—as in one representing a (2+1)D symmetry enriched topological order (SETO)—preservation of global on-site group symmetry after condensation by a commutative Q-system object \(A \in \mathcal {C}\) necessitates the existence of a G-equivariant structure on A. When interpreted spatially, the condensation boundary has its own internal topological symmetries. We elaborate an algebraic framework for describing the internal topological symmetries of compatible (1+1)D gapped boundaries for (2+1)D topologically ordered systems in terms of hypergroup actions. Then, we investigate the coherence of global on-site bulk symmetries and boundary symmetries. We present a categorical obstruction to the preservation of symmetry in a way which is coherent in terms of lifts of categorical actions to a certain 2-group of bulk symmetries. We give a characterization of this obstruction in the case of condensation by a Lagrangian algebra and boundary symmetries given by subalgebras of the convolution algebra associated with a Lagrangian algebra object.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.