{"title":"Heterogeneous tailoring of stacked 2D structures with varying chirality","authors":"Vijay Kumar Choyal, Shaker Meguid, Shailesh Kundalwal","doi":"10.1007/s10999-025-09745-9","DOIUrl":null,"url":null,"abstract":"<div><p>Recent developments in stacking of weakly bonded van der Waals of atomically thin layers has the potential of fabricating nano-systems with desired properties. In this effort, we carried out comprehensive molecular dynamics simulations to study the mechanical behaviour of boron nitride layer, graphene layer, and their stacked configurations using modified Tersoff and Lennard–Jones force fields under varied conditions. We evaluated their mechanical properties for distinct chirality angles ranging from <span>\\(0^{^\\circ }\\)</span> to <span>\\(30^{^\\circ }\\)</span> directions. We found that the (i) armchair configuration of the nano-structure possesses higher elastic modulus, irrespective of the stacking sequence and the applied strain rate, and (ii) elastic moduli of boron nitride AB-stacked configurations are higher than boron nitride monolayer. The effect of chirality angle was largely observed at higher strains. At lower strains, the effect of chirality angle is negligible for boron nitride/graphene heterogeneous structures. In this effort, we provide a comprehensive understanding of the mechanical properties of stacked configurations of boron nitride and graphene layers, accounting for the effect of chirality angle and strain rate for the design and development of the staking configurations of 2D nano-devices.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"21 3","pages":"445 - 461"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-025-09745-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent developments in stacking of weakly bonded van der Waals of atomically thin layers has the potential of fabricating nano-systems with desired properties. In this effort, we carried out comprehensive molecular dynamics simulations to study the mechanical behaviour of boron nitride layer, graphene layer, and their stacked configurations using modified Tersoff and Lennard–Jones force fields under varied conditions. We evaluated their mechanical properties for distinct chirality angles ranging from \(0^{^\circ }\) to \(30^{^\circ }\) directions. We found that the (i) armchair configuration of the nano-structure possesses higher elastic modulus, irrespective of the stacking sequence and the applied strain rate, and (ii) elastic moduli of boron nitride AB-stacked configurations are higher than boron nitride monolayer. The effect of chirality angle was largely observed at higher strains. At lower strains, the effect of chirality angle is negligible for boron nitride/graphene heterogeneous structures. In this effort, we provide a comprehensive understanding of the mechanical properties of stacked configurations of boron nitride and graphene layers, accounting for the effect of chirality angle and strain rate for the design and development of the staking configurations of 2D nano-devices.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.