On pseudoprime RSA moduli

IF 0.7 Q2 MATHEMATICS
Florian Luca, Dimbinaina Ralaivaosaona, Jorge Jiménez Urroz
{"title":"On pseudoprime RSA moduli","authors":"Florian Luca,&nbsp;Dimbinaina Ralaivaosaona,&nbsp;Jorge Jiménez Urroz","doi":"10.1007/s13370-025-01338-1","DOIUrl":null,"url":null,"abstract":"<div><p>In 2010, Dieulefait and Urroz considered the notion of malleability of an RSA modulus. They proved that, given some information on the factors of numbers coprime to <i>n</i>, where <i>n</i> is an RSA modulus, there exists an algorithm that finds a proper factor of <i>n</i> in time <span>\\(O(\\log n)\\)</span>. As a particular case of their algorithm, just some knowledge of the factors of <span>\\(2^n\\pm 1\\)</span> is enough to factor <i>n</i> except possibly when <i>n</i> is a base-2 pseudoprime. They went on to prove that the set of these exceptional RSA moduli with prime factors between <i>z</i> and 2<i>z</i> has size at most <span>\\(O(z^2/(\\log z)^3)\\)</span>. In the present paper, we improve this bound significantly and show that the counting function for these RSA moduli is bounded above by <span>\\(O(z^{8/5}/(\\log z)^2)\\)</span>. In addition, as a related problem, we prove an upper bound of <span>\\(O(z^{4/5}/(\\log z)^{2/5})\\)</span> for the number of base-2 pseudoprimes up to <i>z</i> that are products of two primes.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01338-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01338-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2010, Dieulefait and Urroz considered the notion of malleability of an RSA modulus. They proved that, given some information on the factors of numbers coprime to n, where n is an RSA modulus, there exists an algorithm that finds a proper factor of n in time \(O(\log n)\). As a particular case of their algorithm, just some knowledge of the factors of \(2^n\pm 1\) is enough to factor n except possibly when n is a base-2 pseudoprime. They went on to prove that the set of these exceptional RSA moduli with prime factors between z and 2z has size at most \(O(z^2/(\log z)^3)\). In the present paper, we improve this bound significantly and show that the counting function for these RSA moduli is bounded above by \(O(z^{8/5}/(\log z)^2)\). In addition, as a related problem, we prove an upper bound of \(O(z^{4/5}/(\log z)^{2/5})\) for the number of base-2 pseudoprimes up to z that are products of two primes.

2010年,Dieulefait和Urroz考虑了RSA模的延展性的概念。他们证明了,给定一些关于数的素数因子的信息,其中n是RSA模数,存在一种算法可以在时间上找到n的合适因子\(O(\log n)\)。作为他们算法的一个特例,只要知道\(2^n\pm 1\)的因子就足以分解n除非n是一个以2为基底的伪素数。他们继续证明这些素数因子在z和2z之间的特殊RSA模的集合的大小最多为\(O(z^2/(\log z)^3)\)。在本文中,我们显著地改进了这个界,并证明了这些RSA模的计数函数有\(O(z^{8/5}/(\log z)^2)\)的上界。此外,作为一个相关问题,我们证明了两个素数乘积的以2为基数的伪素数的个数的上界\(O(z^{4/5}/(\log z)^{2/5})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信