On the existence of nontrivial solutions for modified fractional Schrödinger-Poisson systems via perturbation method

IF 0.7 4区 数学 Q4 MATHEMATICS, APPLIED
Atefe Goli, Sayyed Hashem Rasouli, Somayeh Khademloo
{"title":"On the existence of nontrivial solutions for modified fractional Schrödinger-Poisson systems via perturbation method","authors":"Atefe Goli,&nbsp;Sayyed Hashem Rasouli,&nbsp;Somayeh Khademloo","doi":"10.21136/AM.2025.0232-23","DOIUrl":null,"url":null,"abstract":"<div><p>The existence of nontrivial solutions is considered for the fractional Schrödinger-Poisson system with double quasi-linear terms: </p><div><div><span>$$\\begin{cases}(-\\Delta)^{s}u+V(x)u+\\phi u -{1\\over2}u (-\\Delta)^{s}u^{2}=f(x,u), &amp; x\\in\\mathbb{R}^{3} , \\\\ (-\\Delta)^{t} \\phi= u^{2}, &amp; x\\in\\mathbb{R}^{3},\\end{cases}$$</span></div></div><p> where (−Δ)<sup><i>α</i></sup> is the fractional Laplacian for <i>α</i> = <i>s</i>, <i>t</i> ∈ (0, 1] with <i>s</i> &lt; <i>t</i> and 2<i>t</i> + 4<i>s</i> &gt; 3. Under assumptions on <i>V</i> and <i>f</i>, we prove the existence of positive solutions and negative solutions for the above system by using perturbation method and the mountain pass theorem.</p></div>","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"70 2","pages":"293 - 310"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2025.0232-23","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of nontrivial solutions is considered for the fractional Schrödinger-Poisson system with double quasi-linear terms:

$$\begin{cases}(-\Delta)^{s}u+V(x)u+\phi u -{1\over2}u (-\Delta)^{s}u^{2}=f(x,u), & x\in\mathbb{R}^{3} , \\ (-\Delta)^{t} \phi= u^{2}, & x\in\mathbb{R}^{3},\end{cases}$$

where (−Δ)α is the fractional Laplacian for α = s, t ∈ (0, 1] with s < t and 2t + 4s > 3. Under assumptions on V and f, we prove the existence of positive solutions and negative solutions for the above system by using perturbation method and the mountain pass theorem.

用摄动法研究修正分数阶Schrödinger-Poisson系统非平凡解的存在性
考虑具有二重拟线性项的分数阶Schrödinger-Poisson系统非平凡解的存在性:$$\begin{cases}(-\Delta)^{s}u+V(x)u+\phi u -{1\over2}u (-\Delta)^{s}u^{2}=f(x,u), & x\in\mathbb{R}^{3} , \\ (-\Delta)^{t} \phi= u^{2}, & x\in\mathbb{R}^{3},\end{cases}$$其中(−Δ)α是α = s, t∈(0,1),s &lt; t和2t + 4s &gt; 3的分数阶拉普拉斯式。在V和f的假设下,利用摄动法和山口定理证明了上述系统正解和负解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applications of Mathematics
Applications of Mathematics 数学-应用数学
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
3.0 months
期刊介绍: Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering. The main topics covered include: - Mechanics of Solids; - Fluid Mechanics; - Electrical Engineering; - Solutions of Differential and Integral Equations; - Mathematical Physics; - Optimization; - Probability Mathematical Statistics. The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信