On the Instabilities of Small-Scale Modes of Oscillations Against the Background of a Collapsing Galaxy Model

IF 0.7 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
S. N. Nuritdinov, J. M. Ganiev, K. T. Mirtadjieva
{"title":"On the Instabilities of Small-Scale Modes of Oscillations Against the Background of a Collapsing Galaxy Model","authors":"S. N. Nuritdinov,&nbsp;J. M. Ganiev,&nbsp;K. T. Mirtadjieva","doi":"10.1134/S1063772925701665","DOIUrl":null,"url":null,"abstract":"<p>In this work, the gravitational instability of small-scale perturbations with an azimuthal wave number <span>\\(m = 2\\)</span> in disk-like self-gravitating systems is considered. Calculations of horizontal small-scale oscillation modes <span>\\((m;N) = (2;10)\\)</span> and (2; 20) against the background of a nonlinearly non-equilibrium anisotropic model of a self-gravitating disk are performed. Critical diagrams of the relationship between the virial parameter and the degree of rotation for these modes are constructed, and the increments of instability for different values of the rotation parameter are calculated. The results show that the instability for the oscillation mode (2; 10) begins at a virial parameter value of <span>\\({{(2T{\\text{/}}\\left| U \\right|{\\kern 1pt} )}_{0}} \\approx 0.217\\)</span> at <span>\\(\\Omega = 0\\)</span> and reaches 0.413 at <span>\\(\\Omega = 1\\)</span>. For the oscillation mode (2; 20), the instability starts at a virial parameter value of <span>\\({{(2T{\\text{/}}\\left| U \\right|{\\kern 1pt} )}_{0}} \\approx 0.128\\)</span> at <span>\\(\\Omega = 0\\)</span> and reaches 0.146 at <span>\\(\\Omega = 1\\)</span>. It is found that with an increase in the rotation parameter, the instability region also increases, while with an increase in the degree of small-scale structure, the instability region significantly decreases. The work is partially based on a talk presented at the Modern Stellar Astronomy 2024 conference.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":"69 3","pages":"255 - 267"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772925701665","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the gravitational instability of small-scale perturbations with an azimuthal wave number \(m = 2\) in disk-like self-gravitating systems is considered. Calculations of horizontal small-scale oscillation modes \((m;N) = (2;10)\) and (2; 20) against the background of a nonlinearly non-equilibrium anisotropic model of a self-gravitating disk are performed. Critical diagrams of the relationship between the virial parameter and the degree of rotation for these modes are constructed, and the increments of instability for different values of the rotation parameter are calculated. The results show that the instability for the oscillation mode (2; 10) begins at a virial parameter value of \({{(2T{\text{/}}\left| U \right|{\kern 1pt} )}_{0}} \approx 0.217\) at \(\Omega = 0\) and reaches 0.413 at \(\Omega = 1\). For the oscillation mode (2; 20), the instability starts at a virial parameter value of \({{(2T{\text{/}}\left| U \right|{\kern 1pt} )}_{0}} \approx 0.128\) at \(\Omega = 0\) and reaches 0.146 at \(\Omega = 1\). It is found that with an increase in the rotation parameter, the instability region also increases, while with an increase in the degree of small-scale structure, the instability region significantly decreases. The work is partially based on a talk presented at the Modern Stellar Astronomy 2024 conference.

Abstract Image

坍缩星系模型背景下小尺度振荡模态的不稳定性
本文研究了盘状自引力系统中具有方位波数\(m = 2\)的小尺度扰动的引力不稳定性。在自引力盘非线性非平衡各向异性模型的背景下,计算了水平小尺度振荡模态\((m;N) = (2;10)\)和(2;20)。构造了这些模态的维里参数与旋转度关系的临界图,并计算了不同旋转参数值下的不稳定增量。结果表明,振荡模态(2;10)在\(\Omega = 0\)处的维里参数值为\({{(2T{\text{/}}\left| U \right|{\kern 1pt} )}_{0}} \approx 0.217\)时开始失稳,在\(\Omega = 1\)处达到0.413。对于振荡模态(2;20),不稳定性在\(\Omega = 0\)处的维里参数值为\({{(2T{\text{/}}\left| U \right|{\kern 1pt} )}_{0}} \approx 0.128\),在\(\Omega = 1\)处达到0.146。研究发现,随着旋转参数的增大,不稳定区域也随之增大,而随着结构小尺度化程度的增大,不稳定区域显著减小。这项工作部分基于现代恒星天文学2024年会议上的一次演讲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy Reports
Astronomy Reports 地学天文-天文与天体物理
CiteScore
1.40
自引率
20.00%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信