{"title":"Highly integrated color center creation with cooled hydrogenated molecules irradiation","authors":"Masatomi Iizawa, Yasuhito Narita","doi":"10.1140/epjqt/s40507-025-00379-6","DOIUrl":null,"url":null,"abstract":"<div><p>Photoluminescent point defects, such as nitrogen vacancy (NV) color centers in diamond, have attracted much attention as solid-state qubits. In recent years, a method has been developed to dope ions one-by-one into a solid substrate with Ångström position accuracy using a Paul trap. However, the dopant atoms must be laser-cooled, and the atoms that are promising dopants for solid-state quantum devices, such as nitrogen, cannot be directly applied. In the previous studies, the cooling of the dopant ions has been achieved using a sympathetic cooling technique, in which the laser-cooled atoms are sandwiched, but this method has several problems such as the need for a mechanism to remove the laser-cooled atoms and the inability to distinguish between the dopant atoms and contaminations. We show that these problems can be overcome by directly cooling the hydrogenated ions instead of sympathetically cooling the ions, and the position accuracy can be improved.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00379-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00379-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photoluminescent point defects, such as nitrogen vacancy (NV) color centers in diamond, have attracted much attention as solid-state qubits. In recent years, a method has been developed to dope ions one-by-one into a solid substrate with Ångström position accuracy using a Paul trap. However, the dopant atoms must be laser-cooled, and the atoms that are promising dopants for solid-state quantum devices, such as nitrogen, cannot be directly applied. In the previous studies, the cooling of the dopant ions has been achieved using a sympathetic cooling technique, in which the laser-cooled atoms are sandwiched, but this method has several problems such as the need for a mechanism to remove the laser-cooled atoms and the inability to distinguish between the dopant atoms and contaminations. We show that these problems can be overcome by directly cooling the hydrogenated ions instead of sympathetically cooling the ions, and the position accuracy can be improved.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.