Variations on Pascal’s theorem

IF 0.5 4区 数学 Q3 MATHEMATICS
Ciro Ciliberto, Rick Miranda
{"title":"Variations on Pascal’s theorem","authors":"Ciro Ciliberto,&nbsp;Rick Miranda","doi":"10.1007/s00013-025-02122-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a variety of statements that are in the spirit of the famous theorem of Pascal, often referred to as the “Mystic Hexagon”. We give explicit equations describing the conditions for <span>\\(d+4\\)</span> points to lie on rational normal curves. A collection of problems of Pascal type are considered for quadric surfaces in <span>\\({\\mathbb {P}}^3\\)</span>. Finally we re-prove, using computer algebra methods, a remarkable theorem of Richmond, Segre, and Brown for quadrics in <span>\\({\\mathbb {P}}^4\\)</span> containing five general lines.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 1","pages":"39 - 51"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02122-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a variety of statements that are in the spirit of the famous theorem of Pascal, often referred to as the “Mystic Hexagon”. We give explicit equations describing the conditions for \(d+4\) points to lie on rational normal curves. A collection of problems of Pascal type are considered for quadric surfaces in \({\mathbb {P}}^3\). Finally we re-prove, using computer algebra methods, a remarkable theorem of Richmond, Segre, and Brown for quadrics in \({\mathbb {P}}^4\) containing five general lines.

帕斯卡定理的变体
在本文中,我们提出了各种各样的陈述,这些陈述是在帕斯卡著名定理的精神中,通常被称为“神秘六边形”。我们给出了描述\(d+4\)点位于有理法线上的条件的显式方程。本文在\({\mathbb {P}}^3\)中讨论了二次曲面的Pascal型问题。最后,我们用计算机代数方法重新证明了Richmond、Segre和Brown关于\({\mathbb {P}}^4\)中包含五条一般线的二次曲面的一个重要定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信