{"title":"Integrated Local Energy Decay for Damped Magnetic Wave Equations on Stationary Space-Times","authors":"Collin Kofroth","doi":"10.1007/s13324-025-01115-0","DOIUrl":null,"url":null,"abstract":"<div><p>We establish local energy decay for damped magnetic wave equations on stationary, asymptotically flat space-times subject to the geometric control condition. More specifically, we allow for the addition of time-independent magnetic and scalar potentials, which negatively affect energy coercivity and may add in unwieldy spectral effects. By asserting the non-existence of eigenvalues in the lower half-plane and resonances on the real line, we are able to apply spectral theory from the work of Metcalfe, Sterbenz, and Tataru and combine with a generalization of prior work by the present author to extend the latter work and establish local energy decay, under one additional symmetry hypothesis. Namely, we assume that the damping term is the dominant principal term in the skew-adjoint part of the damped wave operator within the region where the metric perturbation from that of Minkowski space is permitted to be large. We also obtain an energy dichotomy if we do not prohibit non-zero real resonances. In order to make the structure of the argument more cohesive, we contextualize the present work within the requisite existing theory.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01115-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish local energy decay for damped magnetic wave equations on stationary, asymptotically flat space-times subject to the geometric control condition. More specifically, we allow for the addition of time-independent magnetic and scalar potentials, which negatively affect energy coercivity and may add in unwieldy spectral effects. By asserting the non-existence of eigenvalues in the lower half-plane and resonances on the real line, we are able to apply spectral theory from the work of Metcalfe, Sterbenz, and Tataru and combine with a generalization of prior work by the present author to extend the latter work and establish local energy decay, under one additional symmetry hypothesis. Namely, we assume that the damping term is the dominant principal term in the skew-adjoint part of the damped wave operator within the region where the metric perturbation from that of Minkowski space is permitted to be large. We also obtain an energy dichotomy if we do not prohibit non-zero real resonances. In order to make the structure of the argument more cohesive, we contextualize the present work within the requisite existing theory.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.