On the family of elliptic curves \(y^2=x^3-5pqx\)

IF 0.7 Q2 MATHEMATICS
Arkabrata Ghosh
{"title":"On the family of elliptic curves \\(y^2=x^3-5pqx\\)","authors":"Arkabrata Ghosh","doi":"10.1007/s13370-025-01352-3","DOIUrl":null,"url":null,"abstract":"<div><p>This article considers the family of elliptic curves given by <span>\\(E_{pq}: y^2=x^3-5pqx\\)</span> and certain conditions on odd primes <i>p</i> and <i>q</i>. More specifically, we have shown that if <span>\\(p \\equiv 33 \\pmod {40}\\)</span> and <span>\\(q \\equiv 7 \\pmod {40}\\)</span>, then the rank of <span>\\(E_{pq}\\)</span> is zero over both <span>\\(\\mathbb {Q}\\)</span> and <span>\\(\\mathbb {Q}(i)\\)</span>. Furthermore, if the primes <i>p</i> and <i>q</i> are of the form <span>\\(40k + 33\\)</span> and <span>\\(40\\,l + 27\\)</span>, where <span>\\(k,l \\in \\mathbb {Z}\\)</span> such that <span>\\((25k+ 5\\,l +21)\\)</span> is a perfect square, then the given family of elliptic curves has rank one over <span>\\(\\mathbb {Q}\\)</span> and rank two over <span>\\(\\mathbb {Q}(i)\\)</span>. Finally, we have shown that the torsion of <span>\\(E_{pq}\\)</span> over <span>\\(\\mathbb {Q}\\)</span> is isomorphic to <span>\\(\\mathbb {Z}/ 2\\mathbb {Z}\\)</span>.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01352-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article considers the family of elliptic curves given by \(E_{pq}: y^2=x^3-5pqx\) and certain conditions on odd primes p and q. More specifically, we have shown that if \(p \equiv 33 \pmod {40}\) and \(q \equiv 7 \pmod {40}\), then the rank of \(E_{pq}\) is zero over both \(\mathbb {Q}\) and \(\mathbb {Q}(i)\). Furthermore, if the primes p and q are of the form \(40k + 33\) and \(40\,l + 27\), where \(k,l \in \mathbb {Z}\) such that \((25k+ 5\,l +21)\) is a perfect square, then the given family of elliptic curves has rank one over \(\mathbb {Q}\) and rank two over \(\mathbb {Q}(i)\). Finally, we have shown that the torsion of \(E_{pq}\) over \(\mathbb {Q}\) is isomorphic to \(\mathbb {Z}/ 2\mathbb {Z}\).

关于椭圆曲线族 \(y^2=x^3-5pqx\)
本文考虑了\(E_{pq}: y^2=x^3-5pqx\)给出的椭圆曲线族和奇数素数p和q上的某些条件。更具体地说,我们已经证明了如果\(p \equiv 33 \pmod {40}\)和\(q \equiv 7 \pmod {40}\),那么\(E_{pq}\)在\(\mathbb {Q}\)和\(\mathbb {Q}(i)\)上的秩都是零。此外,如果素数p和q的形式为\(40k + 33\)和\(40\,l + 27\),其中\(k,l \in \mathbb {Z}\)使得\((25k+ 5\,l +21)\)是完全平方,则给定的椭圆曲线族的秩为1比\(\mathbb {Q}\)和2比\(\mathbb {Q}(i)\)。最后,我们证明了\(E_{pq}\)在\(\mathbb {Q}\)上的扭转与\(\mathbb {Z}/ 2\mathbb {Z}\)是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信