Simple proofs of certain results on generalized Fekete-Szegő functional in the class \(\mathcal {S}\)

IF 1.6 3区 数学 Q1 MATHEMATICS
Teodor Bulboacă, Milutin Obradović, Nikola Tuneski
{"title":"Simple proofs of certain results on generalized Fekete-Szegő functional in the class \\(\\mathcal {S}\\)","authors":"Teodor Bulboacă,&nbsp;Milutin Obradović,&nbsp;Nikola Tuneski","doi":"10.1007/s13324-025-01103-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we give simple proofs for the main results concerning generalized Fekete-Szegő functional of type <span>\\(\\left| a_{3}(f)-\\lambda a_{2}(f)^{2}\\right| -\\mu |a_{2}(f)|\\)</span>, where <span>\\(\\lambda \\in \\mathbb {C}\\)</span>, <span>\\(\\mu &gt;0\\)</span> and <span>\\(a_{n}(f)\\)</span> is <i>n</i>-th coefficient of the power series expansion of <span>\\(f\\in \\mathcal {S}\\)</span>. In addition, we studied this functional separately for the class <span>\\(\\mathcal {K}\\)</span> of convex functions and we emphasize that all the results of the paper are sharp (i.e. the best possible). The advantages of the present study are that the techniques used in the proofs are more easier and use known results regarding the univalent functions, and those that it give the best possible results not only for the entire class of univalent normalized functions <span>\\(\\mathcal {S}\\)</span> but also for its subclass of convex functions <span>\\(\\mathcal {K}\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01103-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01103-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we give simple proofs for the main results concerning generalized Fekete-Szegő functional of type \(\left| a_{3}(f)-\lambda a_{2}(f)^{2}\right| -\mu |a_{2}(f)|\), where \(\lambda \in \mathbb {C}\), \(\mu >0\) and \(a_{n}(f)\) is n-th coefficient of the power series expansion of \(f\in \mathcal {S}\). In addition, we studied this functional separately for the class \(\mathcal {K}\) of convex functions and we emphasize that all the results of the paper are sharp (i.e. the best possible). The advantages of the present study are that the techniques used in the proofs are more easier and use known results regarding the univalent functions, and those that it give the best possible results not only for the entire class of univalent normalized functions \(\mathcal {S}\) but also for its subclass of convex functions \(\mathcal {K}\).

类中广义fekete - szegov泛函某些结果的简单证明 \(\mathcal {S}\)
本文给出了关于\(\left| a_{3}(f)-\lambda a_{2}(f)^{2}\right| -\mu |a_{2}(f)|\)型广义fekete - szegoger泛函的主要结果的简单证明,其中\(\lambda \in \mathbb {C}\)、\(\mu >0\)和\(a_{n}(f)\)是\(f\in \mathcal {S}\)的幂级数展开式的第n个系数。此外,我们对该类\(\mathcal {K}\)的凸函数单独研究了这个函数,我们强调本文的所有结果都是尖锐的(即最好的可能)。本研究的优点是证明中使用的技术更容易,并且使用了关于单价函数的已知结果,并且它不仅对整个单价归一化函数类\(\mathcal {S}\)而且对其子类凸函数\(\mathcal {K}\)给出了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信