{"title":"A unified approach to thermonuclear reaction rates","authors":"Ashik A. Kabeer, Dilip Kumar","doi":"10.1007/s10509-025-04458-z","DOIUrl":null,"url":null,"abstract":"<div><p>Thermonuclear fusion reactions within stellar interiors are primarily responsible for generating energy and synthesizing the elements that compose the universe. Calculating the reaction rates provides essential information about the lifespan and luminosity of Sun-like stars, eventually, it has siginificant role in big-bang nucleosynthesis. In this article, we consider the exact thermonuclear reaction rate functions in standard, cut-off, and depleted tail cases. Since 1984, analytic solution of these thermonuclear reaction rates were obtained by many authors and a number of possible generalizations and their closed form solutions are available in the literature. The present study unifies all such generalizations through a single thermonuclear rate function via the techniques in statistical mechanics. A novel velocity distribution function is developed for interacting particles, extending their applicability to the maximum. Since real stellar scenarios often deviate from strict hydrostatic equilibrium case, this improved distribution captures these deviations effectively. The paper gives more emphasis on non-resonant reaction rates in depleted tail case and obtain the closed-form solution in terms of Buschman H-function of two variables.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04458-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Thermonuclear fusion reactions within stellar interiors are primarily responsible for generating energy and synthesizing the elements that compose the universe. Calculating the reaction rates provides essential information about the lifespan and luminosity of Sun-like stars, eventually, it has siginificant role in big-bang nucleosynthesis. In this article, we consider the exact thermonuclear reaction rate functions in standard, cut-off, and depleted tail cases. Since 1984, analytic solution of these thermonuclear reaction rates were obtained by many authors and a number of possible generalizations and their closed form solutions are available in the literature. The present study unifies all such generalizations through a single thermonuclear rate function via the techniques in statistical mechanics. A novel velocity distribution function is developed for interacting particles, extending their applicability to the maximum. Since real stellar scenarios often deviate from strict hydrostatic equilibrium case, this improved distribution captures these deviations effectively. The paper gives more emphasis on non-resonant reaction rates in depleted tail case and obtain the closed-form solution in terms of Buschman H-function of two variables.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.