Soliton dynamics related to the stochastic Gross–Pitaevskii equation in the presence of random fluctuations

IF 2.1 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2025-07-07 DOI:10.1007/s12043-025-02957-w
Fiza Batool, Nauman Raza, Iqra Anwar, Mustafa Bayram, Ahmet Bekir
{"title":"Soliton dynamics related to the stochastic Gross–Pitaevskii equation in the presence of random fluctuations","authors":"Fiza Batool,&nbsp;Nauman Raza,&nbsp;Iqra Anwar,&nbsp;Mustafa Bayram,&nbsp;Ahmet Bekir","doi":"10.1007/s12043-025-02957-w","DOIUrl":null,"url":null,"abstract":"<div><p>The main goal of this paper is to investigate the soliton dynamics of the stochastic Gross–Pitaevskii equation (SGPE), which is forced by multiplicative white noise by using new extended direct algebraic method. The SGPE serves as a fundamental model in the study of Bose–Einstein condensates (BECs) and related systems, capturing complex nonlinear interactions in ultra-cold atomic gases. Incorporating random fluctuations into the SGPE framework reflects real-world scenarios where environmental noise plays a significant role. Utilising a direct algebraic method enables a comprehensive exploration of the interplay between deterministic soliton behaviour and stochastic perturbations. Through analytical analysis, we unveil the intricate effects of random fluctuations on soliton formation, propagation and stability. This paper not only advances our fundamental understanding of soliton dynamics in stochastic systems but also provides practical tools for harnessing and controlling soliton behaviour in complex, fluctuating environments.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-025-02957-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of this paper is to investigate the soliton dynamics of the stochastic Gross–Pitaevskii equation (SGPE), which is forced by multiplicative white noise by using new extended direct algebraic method. The SGPE serves as a fundamental model in the study of Bose–Einstein condensates (BECs) and related systems, capturing complex nonlinear interactions in ultra-cold atomic gases. Incorporating random fluctuations into the SGPE framework reflects real-world scenarios where environmental noise plays a significant role. Utilising a direct algebraic method enables a comprehensive exploration of the interplay between deterministic soliton behaviour and stochastic perturbations. Through analytical analysis, we unveil the intricate effects of random fluctuations on soliton formation, propagation and stability. This paper not only advances our fundamental understanding of soliton dynamics in stochastic systems but also provides practical tools for harnessing and controlling soliton behaviour in complex, fluctuating environments.

随机波动下与随机Gross-Pitaevskii方程相关的孤子动力学
本文的主要目的是利用一种新的扩展直接代数方法研究受乘性白噪声约束的随机Gross-Pitaevskii方程(SGPE)的孤子动力学。SGPE作为研究玻色-爱因斯坦凝聚体(BECs)和相关系统的基本模型,捕获了超冷原子气体中复杂的非线性相互作用。将随机波动纳入SGPE框架反映了环境噪声起重要作用的现实世界场景。利用直接代数方法可以全面探索确定性孤子行为和随机扰动之间的相互作用。通过解析分析,揭示了随机波动对孤子形成、传播和稳定性的复杂影响。本文不仅推进了我们对随机系统中孤子动力学的基本理解,而且为在复杂、波动的环境中利用和控制孤子行为提供了实用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信