Application of the Tantawy Technique for Modeling Fractional Ion-Acoustic Waves in Electronegative Nonthermal Plasmas, Part (II): Fractional Modified KdV-Solitary Waves

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Samir A. El-Tantawy, Weaam Alhejaili, Muhammad Khalid, Amnah S. Al-Johani
{"title":"Application of the Tantawy Technique for Modeling Fractional Ion-Acoustic Waves in Electronegative Nonthermal Plasmas, Part (II): Fractional Modified KdV-Solitary Waves","authors":"Samir A. El-Tantawy,&nbsp;Weaam Alhejaili,&nbsp;Muhammad Khalid,&nbsp;Amnah S. Al-Johani","doi":"10.1007/s13538-025-01800-2","DOIUrl":null,"url":null,"abstract":"<div><p>Building on our previous analysis of the planar fractional Korteweg-de Vries (FKdV) solitary waves [Part (I)] (El-Tantawy et al., Braz. J. Phys. <b>55</b>, 123, 2025), this research tackles the more complex realm of fractional modified KdV (mKdV) wave propagation in non-Maxwellian unmagnetized electronegative plasmas (ENPs) composed of inertial positive and negative ions and Cairns-distributed inertialess electrons. Our study has two main objectives: The first one is to derive the cubic nonlinearity mKdV equation, which governs solitary wave (SW) propagation in this plasma model, using the reductive perturbation technique (RPT). The second objective, notable for its novelty and significance, entails utilizing the “Tantawy technique” to analyze the fractional planar mKdV (FmKdV) equation. Thus, highly accurate and stable approximations will be generated to clarify the properties of fractional mKdV solitary waves (SWs) and enable a deeper understanding of the dynamic behavior of these complex phenomena during propagation. Additionally, the Laplace transform iterative method (LTIM) is applied to examine and analyze the FmKdV equation and derive analytical approximations, facilitating a comparative analysis with the results of the Tantawy technique. To evaluate the accuracy of all generated approximations using the two proposed techniques, the absolute error of all generated approximations is estimated compared to the exact solution for the integer case. The influence of various plasma parameters on the characteristic behavior of the profile of the FmKdV-SWs is numerically investigated. This research offers valuable insights into laboratory, space, and astrophysical plasma systems.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-025-01800-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Building on our previous analysis of the planar fractional Korteweg-de Vries (FKdV) solitary waves [Part (I)] (El-Tantawy et al., Braz. J. Phys. 55, 123, 2025), this research tackles the more complex realm of fractional modified KdV (mKdV) wave propagation in non-Maxwellian unmagnetized electronegative plasmas (ENPs) composed of inertial positive and negative ions and Cairns-distributed inertialess electrons. Our study has two main objectives: The first one is to derive the cubic nonlinearity mKdV equation, which governs solitary wave (SW) propagation in this plasma model, using the reductive perturbation technique (RPT). The second objective, notable for its novelty and significance, entails utilizing the “Tantawy technique” to analyze the fractional planar mKdV (FmKdV) equation. Thus, highly accurate and stable approximations will be generated to clarify the properties of fractional mKdV solitary waves (SWs) and enable a deeper understanding of the dynamic behavior of these complex phenomena during propagation. Additionally, the Laplace transform iterative method (LTIM) is applied to examine and analyze the FmKdV equation and derive analytical approximations, facilitating a comparative analysis with the results of the Tantawy technique. To evaluate the accuracy of all generated approximations using the two proposed techniques, the absolute error of all generated approximations is estimated compared to the exact solution for the integer case. The influence of various plasma parameters on the characteristic behavior of the profile of the FmKdV-SWs is numerically investigated. This research offers valuable insights into laboratory, space, and astrophysical plasma systems.

Tantawy技术在电负性非热等离子体中模拟分数离子声波中的应用,第二部分:分数修正kdv -孤波
基于我们之前对平面分数Korteweg-de Vries (FKdV)孤立波的分析[Part (I)] (El-Tantawy et al., Braz。本研究解决了分数阶修正KdV (mKdV)波在由惯性正负离子和凯恩斯分布的无惯性电子组成的非麦克斯韦非磁化电负等离子体(ENPs)中的传播的更复杂领域。我们的研究有两个主要目标:第一个目标是利用约化微扰技术(RPT)推导出控制等离子体模型中孤立波(SW)传播的三次非线性mKdV方程。第二个目标,以其新颖性和重要性而闻名,需要利用“Tantawy技术”来分析分数平面mKdV (FmKdV)方程。因此,将产生高精度和稳定的近似,以阐明分数阶mKdV孤立波(SWs)的性质,并使人们能够更深入地了解这些复杂现象在传播过程中的动态行为。此外,应用拉普拉斯变换迭代法(LTIM)对FmKdV方程进行检验和分析,并推导出解析近似,便于与Tantawy技术的结果进行比较分析。为了评估使用这两种提出的技术生成的所有近似值的准确性,将所有生成的近似值的绝对误差与整数情况下的精确解进行比较。数值研究了不同等离子体参数对FmKdV-SWs剖面特征行为的影响。这项研究为实验室、太空和天体物理等离子体系统提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brazilian Journal of Physics
Brazilian Journal of Physics 物理-物理:综合
CiteScore
2.50
自引率
6.20%
发文量
189
审稿时长
6.0 months
期刊介绍: The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信