Long Time Stability of Hamiltonian Derivative Nonlinear Schrödinger Equations Without Potential

IF 2.4 1区 数学 Q1 MATHEMATICS, APPLIED
Hu Shengqing, Zhang Jing
{"title":"Long Time Stability of Hamiltonian Derivative Nonlinear Schrödinger Equations Without Potential","authors":"Hu Shengqing,&nbsp;Zhang Jing","doi":"10.1007/s00205-025-02109-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove an abstract Birkhoff normal form theorem for some unbounded infinite dimensional Hamiltonian systems. Based on this result we obtain that the solution to Derivative Nonlinear Schrödinger equations under periodic boundary condition with typical small enough initial value remains small in the Sobolev norm <span>\\( H^{\\textbf{s}}(\\mathbb {T})\\)</span> over a long time interval. The length of the time interval is equal to <span>\\(e^{|\\ln R|^{1+\\gamma }}\\)</span> with <span>\\(0&lt;\\gamma &lt;1/5\\)</span> as the initial value is smaller than <span>\\(R\\ll 1\\)</span>.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02109-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove an abstract Birkhoff normal form theorem for some unbounded infinite dimensional Hamiltonian systems. Based on this result we obtain that the solution to Derivative Nonlinear Schrödinger equations under periodic boundary condition with typical small enough initial value remains small in the Sobolev norm \( H^{\textbf{s}}(\mathbb {T})\) over a long time interval. The length of the time interval is equal to \(e^{|\ln R|^{1+\gamma }}\) with \(0<\gamma <1/5\) as the initial value is smaller than \(R\ll 1\).

无势哈密顿导数非线性Schrödinger方程的长时间稳定性
本文证明了一类无界无限维哈密顿系统的抽象Birkhoff范式定理。在此基础上,我们得到了具有典型足够小初值的周期边界条件下导数非线性Schrödinger方程的解在很长的时间间隔内在Sobolev范数\( H^{\textbf{s}}(\mathbb {T})\)内保持小。时间间隔的长度为\(e^{|\ln R|^{1+\gamma }}\),初始值为\(0<\gamma <1/5\),小于\(R\ll 1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信