{"title":"Long Time Validity of the Linearized Boltzmann Equation for Hard Spheres: A Proof Without Billiard Theory","authors":"Corentin Le Bihan","doi":"10.1007/s00205-025-02105-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study space–time fluctuations of a hard sphere system at thermal equilibrium, and prove that the covariance converges to the solution of a linearized Boltzmann equation in the low density limit, globally in time. This result was obtained previously in Bodineau et al. (Commun Pure Appl Math 76:3852–3911, 2021) by using uniform bounds on the number of recollisions of dispersing systems of hard spheres [as provided for instance in Burago et al. (Ann Math (2), 147(3):695–708, 1998)]. We present a self-contained proof with substantial differences, which does not use this geometric result. This can be regarded as the first step of a program aiming of deriving the fluctuation theory of the rarefied gas for interaction potentials different from hard spheres.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02105-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study space–time fluctuations of a hard sphere system at thermal equilibrium, and prove that the covariance converges to the solution of a linearized Boltzmann equation in the low density limit, globally in time. This result was obtained previously in Bodineau et al. (Commun Pure Appl Math 76:3852–3911, 2021) by using uniform bounds on the number of recollisions of dispersing systems of hard spheres [as provided for instance in Burago et al. (Ann Math (2), 147(3):695–708, 1998)]. We present a self-contained proof with substantial differences, which does not use this geometric result. This can be regarded as the first step of a program aiming of deriving the fluctuation theory of the rarefied gas for interaction potentials different from hard spheres.
研究了一个硬球系统在热平衡状态下的时空涨落,证明了系统的协方差在低密度极限下收敛于线性化玻尔兹曼方程的解。这一结果是由Bodineau et al. (commons Pure applied Math 76:3852 - 3911,2021)先前通过使用硬球体分散系统的回忆数的均匀界获得的[例如,Burago et al. (Ann Math(2), 147(3):695 - 708,1998)]。我们提出了一个不使用这个几何结果的有实质区别的独立证明。这可以看作是旨在推导不同于硬球相互作用势的稀薄气体涨落理论的程序的第一步。
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.