T. N. Tikhonova, A. V. Barkovaya, V. V. Mamed-Nabizade, S. T. Matskeplishvili, N. N. Sysoev, A. S. Erofeev, E. A. Fadeev
{"title":"Investigation of the Topography and Mechanical Properties of the System Living Cell–Hydrogel Using Scanning Ion-Conductance Microscopy","authors":"T. N. Tikhonova, A. V. Barkovaya, V. V. Mamed-Nabizade, S. T. Matskeplishvili, N. N. Sysoev, A. S. Erofeev, E. A. Fadeev","doi":"10.3103/S0027134925700560","DOIUrl":null,"url":null,"abstract":"<p>At present, hydrogels are attracting increasing interest due to their unique characteristics for use in various fields, such as regenerative medicine, 3D cell culturing, and drug delivery. The main challenge in applying hydrogels in tissue engineering is the accurate assessment of their mechanical characteristics. In this work, a non-invasive method of scanning ion-conductance microscopy (SICM) is used to determine the stiffness of living human neuroblastoma SH-SY5Y cells cultured on a soft, self-assembling hydrogel composed of the Fmoc-FF peptide. The Young’s modulus for SH-SY5Y cells decreases with increasing substrate stiffness, with values of 1015 and 750 Pa on a Petri dish and Fmoc-FF hydrogel, respectively. This method enables simultaneous investigation of the stiffness of living cells and soft hydrogels, which is promising in the field of regenerative medicine.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"80 3","pages":"606 - 612"},"PeriodicalIF":0.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134925700560","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At present, hydrogels are attracting increasing interest due to their unique characteristics for use in various fields, such as regenerative medicine, 3D cell culturing, and drug delivery. The main challenge in applying hydrogels in tissue engineering is the accurate assessment of their mechanical characteristics. In this work, a non-invasive method of scanning ion-conductance microscopy (SICM) is used to determine the stiffness of living human neuroblastoma SH-SY5Y cells cultured on a soft, self-assembling hydrogel composed of the Fmoc-FF peptide. The Young’s modulus for SH-SY5Y cells decreases with increasing substrate stiffness, with values of 1015 and 750 Pa on a Petri dish and Fmoc-FF hydrogel, respectively. This method enables simultaneous investigation of the stiffness of living cells and soft hydrogels, which is promising in the field of regenerative medicine.
期刊介绍:
Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.