Equidistant versus bipartite ground states for 1D classical fluids at fixed particle density

IF 1.6 3区 数学 Q1 MATHEMATICS
Laurent Bétermin, Ladislav Šamaj, Igor Travěnec
{"title":"Equidistant versus bipartite ground states for 1D classical fluids at fixed particle density","authors":"Laurent Bétermin,&nbsp;Ladislav Šamaj,&nbsp;Igor Travěnec","doi":"10.1007/s13324-025-01076-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study the ground-state properties of one-dimensional fluids of classical (i.e., non-quantum) particles interacting pairwisely via a potential, at the fixed particle density <span>\\(\\rho \\)</span>. Restricting ourselves to periodic configurations of particles, two possibilities are considered: an equidistant chain of particles with the uniform spacing <span>\\(A=1/\\rho \\)</span> and its simplest non-Bravais modulation, namely a bipartite lattice composed of two equidistant chains, shifted with respect to one another. Assuming the long range of the interaction potential, the equidistant chain dominates if <i>A</i> is small enough, <span>\\(0&lt;A&lt;A_c\\)</span>. At a critical value of <span>\\(A=A_c\\)</span>, the system undergoes a continuous second-order phase transition from the equidistant chain to a bipartite lattice. The energy and the order parameter are singular functions of the deviation from the critical point <span>\\(A-A_c\\)</span> with universal (i.e., independent of the model’s parameters) mean-field values of critical exponents. The tricritical point at which the curve of continuous second-order transitions meets with the one of discontinuous first-order transitions is determined. The general theory is applied to the Lennard-Jones model with the (<i>n</i>, <i>m</i>) Mie potential for which the phase diagram is constructed. The inclusion of a hard-core around each particle reveals a non-universal critical phenomenon with an <i>m</i>-dependent critical exponent.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01076-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01076-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the ground-state properties of one-dimensional fluids of classical (i.e., non-quantum) particles interacting pairwisely via a potential, at the fixed particle density \(\rho \). Restricting ourselves to periodic configurations of particles, two possibilities are considered: an equidistant chain of particles with the uniform spacing \(A=1/\rho \) and its simplest non-Bravais modulation, namely a bipartite lattice composed of two equidistant chains, shifted with respect to one another. Assuming the long range of the interaction potential, the equidistant chain dominates if A is small enough, \(0<A<A_c\). At a critical value of \(A=A_c\), the system undergoes a continuous second-order phase transition from the equidistant chain to a bipartite lattice. The energy and the order parameter are singular functions of the deviation from the critical point \(A-A_c\) with universal (i.e., independent of the model’s parameters) mean-field values of critical exponents. The tricritical point at which the curve of continuous second-order transitions meets with the one of discontinuous first-order transitions is determined. The general theory is applied to the Lennard-Jones model with the (nm) Mie potential for which the phase diagram is constructed. The inclusion of a hard-core around each particle reveals a non-universal critical phenomenon with an m-dependent critical exponent.

一维经典流体在固定粒子密度下的等距基态与二部基态
我们研究了一维流体的基态性质经典(即,非量子)粒子通过一个势对相互作用,在固定粒子密度\(\rho \)。将我们自己限制在粒子的周期构型中,我们考虑了两种可能性:具有均匀间距\(A=1/\rho \)的等距粒子链及其最简单的非bravais调制,即由两个等距链组成的二部晶格,它们相互移位。假设相互作用势的范围很长,如果A足够小,等距链占主导地位,\(0<A<A_c\)。在临界值\(A=A_c\)处,体系经历了从等距链到二部晶格的连续二阶相变。能量和阶参数是偏离临界点\(A-A_c\)的奇异函数,具有临界指数的普遍(即与模型参数无关)平均场值。确定了连续二阶过渡曲线与不连续一阶过渡曲线相交的三临界点。将一般理论应用于具有(n, m) Mie势的Lennard-Jones模型,并据此构造相图。在每个粒子周围包含一个硬核揭示了一个具有依赖于m的临界指数的非普适性临界现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信